Тестовые задания по специальности «Функциональная диагностика». (для нейрофизиологов)

Основными задачами отдела, отделения, кабинета функциональной диагностики являются:

- выполнение исследований специальными биофизическими методами и средствами в целях физиологической оценки состояния органов, систем и организма в целом здоровых и больных людей;
- наиболее полное удовлетворение потребности населения во всех основных видах функциональных исследований, рекомендуемых для лечебно-профилактических учреждений различного уровня;
- использование в практике новых, современных, наиболее информативных способов диагностики, рациональное расширение перечня методов исследований;
- все перечисленное

В соответствии с указанными задачами отдел (отделение, кабинет) функциональной диагностики осуществляет:

- освоение и внедрение в практику методов функциональной диагностики, соответствующих уровню лечебно-профилактического учреждения
- освоение и внедрение в практику новых приборов и аппаратов
- проведение функциональных исследований и выдачу по их результатам врачебных заключений
- все перечисленное верно

Врач кабинета функциональной диагностики осуществляет:

- выполнение исследований и выдачу по их результатам своих заключений;
- участие в разборе сложных случаев и ошибок в диагностике, выявлении и анализе причин расхождения заключений по методам функциональной диагностики с результатами других диагностических методов;
- качественное ведение медицинской учетно-отчетной документации, архива, анализ качественных и количественных показателей работы;
- все перечисленное верно

Врач функциональной диагностики обязан:

- обеспечить точное и своевременное выполнение своих служебных обязанностей, правил внутреннего трудового распорядка;
- контролировать соблюдение средним и младшим медперсоналом правил техники безопасности и охраны труда, санитарное, хозяйственно-техническое и противопожарное состояние подразделения;
- представлять заведующему подразделением функциональной диагностики, а при его отсутствии главному врачу отчеты о работе;
- все перечисленное верно

За одну условную единицу (УЕ) принимается:

- работа продолжительностью 10 мин. (с учетом подготовительно-заключительного времени, ведения документации и непосредственного проведения исследования)
- работа продолжительностью 15 мин.
- работа продолжительностью 20 мин.
- работа продолжительностью 60 мин.

В соответствии с требованиями специальности врач функциональной диагностики должен знать и уметь:

- классификацию и метрологические характеристики аппаратуры для функциональных исследований, номенклатуру основных приборов, применяемых в функциональной диагностике
- клиническую физиологию кровообращения и дыхания и в зависимости от профиля учреждения другие разделы клинической физиологии
- этиологию, патогенез и клинику основных заболеваний в соответствующей области функционально-диагностических исследований (кардиологии, антиологии, пульмонологии, неврологии и других областях в зависимости от профиля учреждения)
- все перечисленное верно

Журнал регистрации исследований, выполняемых в отделениях (кабинетах) функциональной диагностики заполняется:

- Заведующим отделения функциональной диагностики
- Персоналом, проводящим исследования (врач, медсестра)
- Сестрой-хозяйкой кабинета
- Дежурным врачом

Журнал комплексного технического обслуживания медицинской техники содержит разделы:

- Перечень изделий медицинской техники, подлежащих обслуживанию
- Отметка о проведении инструктажа с медперсоналом
- Отметка о проведении технических осмотров и обслуживания
- Все перечисленное верно

Диагностическими критериями нормального синусового ритма являются:

- зубец P (+) в II отведении и (-) в AVR
- постоянный и нормальный интервал PQ
- постоянная форма зубца Р в каждом отведении
- все вышеуказанные признаки являются диагностическими критериями синусового ритма

Для вертикального положения электрической оси сердца характерно:

- угол альфа равен +40 градусов; зубец R в третьем стандартном отведении больше зубца R во втором стандартном отведении и больше зубца R в первом стандартном отведении
- угол альфа равен +30 градусов; зубец R в первом стандартном отведении больше зубца R в третьем стандартном отведении и больше зубца R во втором стандартном отведении
- угол альфа равен + 90 градусов; зубец R во втором стандартном отведении равен зубцу R в третьем стандартном отведении, но больше зубца R в первом стандартном отведении и зубец R в первом стандартном отведении равен зубцу S в первом стандартном отведении; зубец R в усиленном отведении AVF больше зубца R во втором и третьем стандартных отведениях
- угол альфа равен или больше +120 градусов; зубец R в третьем стандартном отведении больше зубца R во втором и первом стандартных отведениях

Для резкого отклонения электрической оси сердца вправо характерно:

- угол альфа равен + 90 градусов; зубец R во втором стандартном отведении равен или больше зубца R в третьем и первом стандартных отведениях и зубцы R и S в первом стандартном отведении равны между собой; зубец R в усиленном отведении AVF больше зубца R во втором и третьем стандартных отведениях
- угол альфа от +70 до +90 градусов; зубец R во втором стандартном отведении больше зубца R в третьем и первом стандартных отведениях, а зубец R в первом стандартном отведении

больше зубца S первого стандартного отведения; зубец S в усиленном отведении AVL равен или больше зубца R данного отведения

- \bullet угол альфа + 90 градусов; зубец R в третьем стандартном отведении больше зубца R во втором и первом стандартных отведениях и зубец S в первом стандартном отведении больше зубца R данного отведения
- угол альфа больше +120 градусов; зубец R в третьем стандартном отведении больше зубца R во втором и в первом стандартных отведениях и зубец S первого стандартного отведения больше зубца R данного отведения; зубец R усиленного отведения AVR равен или больше зубца Q(S) данного отведения

Для отклонения электрической оси сердца влево характерно:

- угол альфа равен +30градусов; зубец R в третьем стандартном отведении равен зубцу S данного отведения, а зубец R первого стандартного отведения равен зубцу R данного отведения и зубец R первого стандартного отведения равен зубцу R второго стандартного отведения и больше зубца R третьего стандартного отведения
- \bullet угол альфа от 0 до +30 градусов; зубец R первого стандартного отведения больше зубца R во втором и третьем стандартных отведениях и зубец S в третьем стандартном отведении больше зубца R данного отведения; зубец R в усиленном отведении AVF больше зубца S в данном отведении
- \bullet угол альфа от 0 до 30 градусов; зубец R в первом стандартном отведении больше зубца R во втором и третьем стандартных отведениях; зубец R во втором стандартном отведении больше зубца S в данном отведении, а зубец S в третьем стандартном отведении больше зубца R данного отведения
- ullet угол альфа равен или меньше +30 градусов; зубец R в первом стандартном отведении больше зубца R во втором и третьем стандартных отведениях; зубец S второго стандартного отведения больше зубца R данного отведения, а зубец S в третьем стандартном отведении больше зубца R данного отведения и зубец S в усиленном отведении AVF больше зубца R данного отведения

Период абсолютной рефрактерности характеризуется:

- нормальной возбудимостью
- полной невозбудимостью
- снижением возбудимости
- отсутствием изменений

Синусовый узел – центр автоматизма:

- 1 порядка
- 2 порядка
- 3 порядка
- 4 порядка

Какой центр автоматизма в норме является водителем ритма:

- AV узел
- СА узел
- пучок Гиса
- ножки Гиса

Каким ЭКГ признаками характеризуется синусовый ритм:

- \bullet R II > R I > R III
- неэктоптические зубцы Р. предшествующие своему комплексу ORS в каждом из 12

отделений ЭКГ

- постоянная форма и амплитуда Р в каждом отведении
- непостоянная форма и амплитуда Р в каждом отведении

Ритмы из нижних отделов предсердий характеризуются наличием:

- отрицательных Р II, Р III AVF, положительный PAVR и следующих за ними QRS
- отрицательных Р III и отсутствием за ними QRS
- отрицательных P, расположенных после QRS
- отрицательных Р

Зубец Р отражает:

- реполяризацию предсердий
- реполяризацию желудочков
- деполяризацию предсердий
- возбуждение желудочков

В норме ширина комплекса QRS:

- 0.06´´-0.10´´
- 0.11′′-0.15′′
- 0.04´´-0.06´´
- 0.08´´-0.12´´

В норме зубец Q должен обязательно присутствовать в отведениях:

- V1 − V3
- V4 − V6
- в однополюсных отведениях от конечностей
- нигде

Электрическая ось сердца это:

- среднее направление вектора деполяризации желудочков
- направление начального вектора деполяризации желудочков
- направление конечного вектора деполяризации желудочков
- моментный вектор максимальной активации желудочков

Электрическая ось сердца определяется по:

- стандартным отведениям
- соотношению правых и левых грудных отведений
- однополюсным усиленным отведением
- по всем 12-ти ЭКГ отведениям

Если электрическая ось расположена параллельно оси данного отведения, то в этом отведении регистрируется:

- зубец максимальной амплитуды
- зубец минимальной амплитуды
- только отрицательный зубец
- только положительный зубец

Если электрическая ось расположена перпендикулярно оси данного отведения, то в этом отведении:

• может отмечаться изоэлектричный QRS

- R●S
- R и S отличаются высокой амплитудой
- R равен S, как правило, низкоамплитудны

Для нормального положения электрической оси сердца характерно:

- RII > RI > RIII
- RavL \approx SavL
- RII < SII
- SIII> RIII

Нормальному положению электрической оси сердца соответствует:

- угол альфа от 70 до 90 градусов
- угол альфа от 40 до 70 градусов
- угол альфа 30 градусов
- угол альфа от 50 до 70 градусов

Если ∟ α • -30 град., то:

- RI>RII>RIII
- RII•SII
- SavF<RavF
- SIII>RIII

Если ∟ α • -60 град., то:

- RavR●Q(S)avR
- SII<RII
- RI>RII>RIII
- SavF<RavF

Вертикальному положению электрической оси сердца соответствует:

- угол альфа 90 градусов
- угол альфа -30 градусов
- угол альфа от 40 до 70 градусов
- угол альфа 45 градусов

Назовите угол а при RI•SI:

- + 120°
- + 90°
- + 60°
- + 30°

Назовите угол а при RIII∙SIII:

- +120°
- + 90°
- \bullet + 60°
- \bullet + 30°

Отклонению электрической оси сердца вправо соответствует:

- угол альфа > 90 градусов
- угол альфа - 90 градусов

- угол альфа от 90 до 180 градусов
- угол альфа > 45 градусов

Резкому отклонению электрической оси сердца вправо соответствует:

- угол альфа от 40 до 70 градусов
- угол альфа > или равен 120 градусов
- угол альфа от 0 до 30 градусов
- угол альфа от 30 до 70 градусов

Горизонтальному положению электрической оси сердца соответствует:

- угол альфа от 70 до 90 градусов
- угол альфа от 0 до 30 градусов
- угол альфа от 0 до 30 градусов
- угол альфа от 40 до 70 градусов

Отклонению электрической оси сердца влево соответствует:

- угол альфа от 0 до 30 градусов
- угол альфа от 40 до 70 градусов
- угол альфа от 0 до 30 градусов
- угол альфа от 70 до 90 градусов

Резкому отклонению электрической оси сердца влево соответствует:

- угол альфа 90 градусов
- угол альфа > или - 30 градусов
- угол альфа 30 градусов
- угол альфа менее 90 градусов

Для поворота сердца вокруг поперечной оси верхушкой назад является характерным:

- смещение переходной зоны влево
- ЭКГ типа QI-QI-QIII
- электрическая ось типа SI-SII-SIII
- синдром ранней реполяризации

При повороте сердца вокруг поперечной оси верхушкой вперед на ЭКГ отмечают:

- QI-QII-QIII
- смещение переходной зоны вправо
- синдром SIQIII
- электрическую ось типа SI-SII-SIII

Продолжительность зубца Р в норме:

- 0.04´´-0.06´´
- 0.12´´-0.20´´
- 0.06´´-0.10´´
- ●0.08´´-0.12´´

Может ли в правых грудных отведениях наблюдаться в норме отрицательный зубец Т:

- да, всегда
- нет, никогда
- да, у детей и подростков
- да, иногда

Интервал PQ измеряется:

- от начала P до начала Q
- от конца P до начала Q
- от начала Р до окончания Т
- от начала P до окончания S

Сегмент PQ измеряется:

- от начала P до начала Q
- от конца P до начала Q
- от конца Р до окончания Т
- от начала P до окончания S

Продолжительность интервала PQ:

- 0.06´´-0.12´´
- 0.12´´-0.20´´
- 0.20´´-0.26´´
- 0.08´´-0.12´´

В норме ширина зубца Q не должна превышать:

- 0.04^{''}
- 0,03´´
- 0.05′′
- •0.02′′

В норме снижение сегмента ST не должно превышать:

- 1 mm
- 0.5 mm
- любое снижение сегмента ST является патологией
- ●0.8 мм

Признаками увеличения правого предсердия (гипертрофия, дилатация, перегрузка) является:

- \bullet высокий остроконечный зубец P > 2,0-2,5 мB во II, III, aVF; индекс Макруза < 1,1; электрическая ось з. P имеет вид PIII>PI
- ullet высокий остроконечный зубец P > 3,0-3,5 в I, II, aVL, V5-V6; индекс Макруза > 1,6; электрическая ось з. P имеет вид PIII>PI
- \bullet широкий двугорбый з. Р более 0,12 с. в I, II, aVL, V5-V6; индекс Макруза > 1,6; электрическая ось з. Р имеет вид PI<PIII
- \bullet широкий двугорбый з. Р более 0,12 с во II, III, aVF; индекс Макруза < 1,1; электрическая ось з. Р имеет вид PIII>PI

На продолжительность интервала PQ влияет:

- возраст
- частота ритма
- масса тела
- poct

Индекс Макруза - это:

- отношение продолжительности зубца Р к продолжительности интервала PQ
- отношение продолжительности зубца Р к продолжительности сегмента PQ
- отношение продолжительности сегмента PQ к продолжительности интервала PQ
- отношение продолжительности сегмента PQ к ЧСС

Наиболее частое в норме соотношение зубцов "Р" в стандартных отведениях следующее:

- PI>PIII>PII
- PII >PI > PIII
- \bullet PIII > PII > PI
- PI >PII > PIII

Признаками увеличения левого предсердия (гипертрофия, дилатация, перегрузка) является:

- высокий остроконечный зубец Р более 2,0-2,5 мВ во II, III, aVF; индекс Макруза < 1,1; электрическая ось з. Р имеет вид PIII>PI
- высокий остроконечный зубец P более 3,0-3,5 мВ в I, II, aVL, V5-V6; индекс Макруза > 1,6; электрическая ось з. P имеет вид PIII>PI
- ullet широкий двугорбый з. Р более 0,12 с. в I, II, aVL, V5-V6; индекс Макруза > 1,6; электрическая ось з. Р имеет вид PI<PIII
- ullet широкий двугорбый з. Р более 0,12 с во II, III, aVF; индекс Макруза < 1,1; электрическая ось з. Р имеет вид PIII>PI

Признаки увеличения правого предсердия могут быть при:

- приступе бронхиальной астмы
- тромбоэмболии легочной артерии
- отеке легких
- все перечисленное верно

Амплитуда зубца "Р" при нормальной конституции обычно наибольшая:

- во II стандартном отведении
- в отведении aVF
- в III стандартном отведении
- в отведении aVL

Время активации правого предсердия в норме не превышает:

- 0,02 ceĸ.
- 0,03 ceĸ.
- 0,04 ceĸ.
- 0,10 ceĸ.

В комплексе QRS обычно анализируют:

- амплитуду
- продолжительность
- форму
- •зазубрины

В стандартных и усиленных отведениях амплитуда комплекса QRS в норме находится в пределах:

- 9-28 мм
- 12-16 мм
- 7-18 mm
- 5-22 MM

В грудных отведениях амплитуда комплекса QRS в норме находится в пределах:

- 14-19 mm
- 12-24 мм

- 7-25 mm
- 5-22 mm

Назовите, в каких отведениях надежнее выявляются электрокардиографические признаки гипертрофии правого предсердия:

- III и aVF
- V5 и V6
- I и aVI.
- V1 и V2

Назовите, в каких отведениях надежнее выявляются электрокардиографические признаки гипертрофии левого предсердия:

- стандартные отведения
- усиленные однополюсные отведения от конечностей
- правые грудные отведения
- левые грудные отведения

Наибольшее значение для диагностики увеличения обоих предсердий (гипертрофия, дилатация, перегрузка) характерны изменения в отведении:

- V1-V2 регистрируется двухфазный з. Р с резко выраженой 1-ой положительной фазой и 2-ой отрицательной фазой
- \bullet V5-V6 регистрируется широкий, двугорбый з. Р с расстоянием между вершинами более 0.02 с.
- aVR регистрируется отрицательный з. Р
- V1-V2- регистрируется высокий положительный з. Р более 2,0-2,5 мВ

Нормальный зубец Q отражает преимущественно деполяризацию:

- межжелудочковой перегородки
- левого желудочка в целом
- верхушки сердца
- боковых отделов левого желудочка

Для гипертрофии левого желудочка характерно следующее соотношение з. R в отведениях V4-V6:

- RV4>RV5>RV6
- RV6>RV5>RV4
- RV5<RV4<RV6
- все перечисленное верно

Переходная зона при гипертрофии левого желудочка часто смещается:

- в сторону правых грудных отведений
- в сторону левых грудных отведений
- не смещается
- минимально вправо

Сегмент ST в отведениях V5-V6 при гипертрофии левого желудочка может смещаться:

- ullet вверх от изолинии, с дугой обращенной выпуклостью вниз, с переходом в положительный з. Т
- ullet вниз от изолинии, с дугой обращенной выпуклостью вверх, с переходом в отрицательный з. ${
 m T}$

- ullet вниз от изолинии, с дугой обращенной выпуклостью вниз, с переходом в отрицательный з. Т
- вверх от изолинии, с дугой обращенной выпуклостью вверх, с переходом в двухфазный з. Т

В грудных отведениях в норме:

- Rv1<Rv4
- Rv1<Rv2<Rv3
- Rv1>Rv2>Rv3
- Rv1>Rv4

В отведениях по Небу для гипертрофии левого желудочка характерно следующее соотношение зубцов R:

- RD<RA<RI
- RA>RD>RI
- RD>RA>RI
- RI•RA>RD

Зубец Т на ЭКГ отражает реполяризацию:

- обоих желудочков
- только левого желудочка
- только правого желудочка
- левого и частично правого желудочков

Для гипертрофии левого желудочка характерно значение индекса Соколова-Лайона, рассчитанного по формуле S V1+R V5-6:

- ≥ 35 мм у лиц старше 40 лет, ≥40 мм у лиц моложе 40 лет
- ≥ 20 мм у лиц старше 30 лет, ≥ 30 мм у лиц моложе 30 лет
- ≥ 35 мм вне зависимости от возраста
- ≤ 40 мм вне зависимости от возраста

Корнельские критерии, рассчитанные по формуле: R aVL + S V3, при гипертрофии левого желудочка имеют значения:

- > 15 мм у мужчин, > 10 мм у женщин
- <35 мм у мужчин, <30 мм у женщин
- > 28 мм у мужчин, > 20 мм у женщин
- ≥ 28 мм вне зависимости от пола

Косвенным признаком гипертрофии правого желудочка является:

- АВ-блокада 2 степени Мобитц 1
- полная блокада правой ножки пучка Гиса
- блокада передней ветви левой ножки пучка Гиса
- АВ-блокада 2 степени Мобитц 2

Для гипертрофии правого желудочка характерно:

- наличие высокого з. R в V1-V2, при RV1≥SV2
- в отведении aVR появление позднего з. R
- увеличение амплитуды з. S V5-V6
- все перечисленное верно

При гипертрофии правого желудочка переходная зона смещается:

• в сторону правых грудных отведений

- в сторону левых грудных отведений
- не смещается
- в сторону V7-V9

Смещение вниз сегмента ST при выраженной гипертрофии (перегрузке) правого желудочка следует ожидать в отведениях:

- I, aVL
- V5-V6
- V1-V2
- D, Inf

При гипертрофии левого предсердия в отведении V1, 2 зубец Р:

- двугорбый, широкий
- двухфазный (+-)
- двухфазный (-+)
- отрицательный

Время активации левого предсердия в отведении I и avL:

- меньше 0,02 сек
- меньше 0.03 сек
- равняется ≈ 0,04-0,06 сек
- превышает 0,06 сек

Отведения V5,V6 при гипертрофии левого желудочка обычно имеют вид:

- qR
- Rs
- RS
- qRs

Время активации левого желудочка в V5, V6 при гипертрофии левого желудочка:

- уменьшается до 0,02 с
- не изменяется
- равняется ≈ 0,03-0,04 с
- превышает 0,04 с

Ширина комплекса ORS при гипертрофии левого желудочка обычно равна (сек.):

- 0,06-0,09
- \bullet 0,10-0,11
- \bullet 0,08-0,10
- **0**,12-0,16

Для выраженной гипертрофии правого желудочка в отведениях V1, V2 обычно регистрируются:

- rsR', rSR'
- rsr
- RsR
- rS

При умеренной гипертрофии правого желудочка в отведениях V1, V2 обычно отмечают:

- RS, Rs
- qR
- rS
- QS

При резко выраженной гипертрофии правого желудочка V5, V6 может иметь вид:

- rSR
- qR, R
- rS
- RS

Электрическая ось при гипертрофии правого желудочка:

- часто расположена горизонтально
- не меняется
- чаще расположена вертикально
- имеет тенденцию к отклонению вправо

Для гипертрофии правого желудочка характерно:

- увеличение времени активации правого желудочка в VI больше 0,03 с •Rv5, V6>16 мм
- Rv1<2 мм
- RAVR>4 mm

Для перегрузки правого желудочка характерно:

- снижение сегмента STv1,v2, инверсия Tv1,v2
- инверсия Tv5,v6
- быстрые динамические изменения
- блокада левой ножки пучка Гиса

Что из перечисленного является ЭКГ-признаками синоатриальной блокады II ст. I типа:

- Постепенное удлинение интервала PP без выпадения комплекса PQRST
- Постепенное укорочение интервала PP без выпадения комплекса PQRST
- Постепенное укорочение интервала PP с выпадением предсердно-желудочкового комплекса. Пауза включает расстояние менее суммы двух PP
- Постепенное удлинение интервала РР с выпадением предсердно-желудочкового комплекса

Что из перечисленного является ЭКГ признаками синоатриальной блокады II ст. II типа:

- постепенное удлинение интервала РР с выпадением предсердно-желудочкового комплекса
- постепенное укорочение интервала РР с выпадением желудочкового комплекса
- постепенное удлинение интервала РР с выпадением желудочкового комплекса
- отсутствие изменений интервала РР с выпадением предсердно-желудочкового комплекса.

Пауза включает сумму двух интервалов РР

Какие ЭКГ признаки атриовентрикулярной блокады I ст.:

- удлинение интервала PQ больше 0,20 с. Интервалы PQ равные
- постепенное удлинение интервала PQ без выпадения предсердно-желудочкового комплекса
- постепенное укорочение интервала PQ без выпадения комплекса PQRST
- постепенное удлинение интервала PQ с выпадением желудочкового комплекса

Что из перечисленного является ЭКГ признаками атриовентрикулярной блокады II ст. I типа:

- постепенное укорочение интервала PQ с выпадением предсердно-желудочкового комплекса
- постепенное удлинение интервала PQ с выпадением предсердно-желудочкового комплекса
- \bullet постепенное удлинение интервала PQ с выпадением желудочкового комплекса. Пауза включает сумму 2 RR
- ullet постепенное удлинение интервала PQ с выпадением желудочкового комплекса. Пауза включает расстояние менее суммы 2 RR

Что из перечисленного является ЭКГ признаками атриовентрикулярной блокады II ст. II типа:

- постепенное укорочение интервала PQ с выпадением предсердно-желудочкового комплекса
- постепенное удлинение интервала РО с выпадением предсердно-желудочкового комплекса
- наличие постоянного (нормального или удлиненного) интервала PQ без прогрессирующего его удлинения с выпадением желудочкового комплекса. Пауза включает сумму 2 RR
- постепенное удлинение интервала PQ с выпадением желудочкового комплекса. Пауза включает расстояние менее суммы 2 RR

Какие ЭКГ признаки атриовентрикулярной блокады III степени:

- удлинение интервала PQ
- постепенное удлинение интервала PO с последующим выпадением комплекса ORS

- независимый ритм предсердий и желудочков, количество желудочковых комплексов больше предсердий
- независимый ритм предсердий и желудочков, количество зубцов Р больше, чем комплексов QRST

Синдром Фредерика - это сочетание:

- синдрома WPW и полной атриовентрикулярной блокады
- фибрилляции или трепетания предсердий и av блокады III ст.
- АВ блокады и блокады левой ножки пучка Гиса
- фибрилляции предсердий и внутрижелудочковой блокады

Что из перечисленного является признаками проксимальной AB блокады III степени:

- независимый ритм предсердий и желудочков, ЧСС более 40 уд/мин. Желудочковые комплексы обычной формы
- независимый ритм предсердий и желудочков, ЧСС менее 40 уд/мин. Желудочковые комплексы уширенные, деформированные
- независимый ритм предсердий и желудочков, ЧСС менее 30 уд/мин. Комплексы QRS широкие
- независимый ритм предсердий и желудочков, ЧСС более 100 уд/мин. Желудочковые комплексы обычной формы

Что из перечисленного является признаками дистальной полной АВ блокады:

- независимый ритм предсердий и желудочков, ЧСС более 40 уд/мин. Желудочковые комплексы обычной формы
- независимый ритм предсердий и желудочков, ЧСС менее 40 уд/мин. Желудочковые комплексы уширенные, деформированные
- независимый ритм предсердий и желудочков, ЧСС менее 30 уд/мин. Комплексы QRS обычной формы
- независимый ритм предсердий и желудочков, ЧСС менее 30 уд/мин. Комплексы QRS уширены

Какие ЭКГ признаки полной блокады правой ножки пучка Гиса:

- резкое отклонение ЭОС влево, обычная форма и продолжительность комплексов QRS
- rSR1, rsR1 в отведениях V1,2 уширенный зубец S в отв. V5,6. продолжительность QRS более или равно 0,12 сек во всех отведениях
- уширенные деформированные желудочковые комплексы: в отв. V1,2 QRS типа QS, в V5,6, с зазубриной на восходящей части зубца R, дискордантность сегмента ST и зубца T во всех отведениях
- резкое отклонение ЭОС вправо

Сегмент STv1,v2 при блокаде правой ножки пучка Гиса обычно:

- расположен выше изолинии
- расположен ниже изолинии
- имеет неопределенную форму
- расположен на изолинии

Зубец Tv1,v2 при блокаде правой ножки пучка Гиса обычно:

- положительный
- изоэлектричный
- отрицательный

• двухфазный

Электрическая ось сердца при блокаде правой ножки пучка Гиса:

- резко отклонена вправо
- нормальная
- резко отклонена влево
- расположена вертикально или слегка отклонена вправо

Характерные признаки блокады правой ножки пучка Гиса можно отметить в отведениях:

- I и aVL
- aVF и III
- II
- V1

Что из перечисленного является ЭКГ признаками полной блокады левой ножки пучка Гис:

- резкое отклонение ЭОС влево, обычная форма и продолжительность комплексов QRS
- rsR1 комплекс в отведениях V1,2 уширенный зубец S в отв. V5,6. продолжительность QRS более и равно 0,12 сек во всех отведениях
- уширенные деформированные желудочковые комплексы: в отв. V1,2 QRS типа QS, в V5,6, с зазубриной на восходящей части зубца R, дискордантность сегмента ST и зубца T во всех отведениях
- резкое отклонение ЭОС вправо

Для неполной блокады правой ножки пучка Гиса характерна ширина QRS:

- 0,08-0,11 ceĸ.
- 0,12-0, 15 ceĸ.
- 0,06-0,08 ceĸ
- свыше 0,15 сек

При полной блокаде левой ножки пучка Гиса для комплекса QRS наиболее характерна ширина:

- 0,06-0,10 ceĸ
- 0,12-0,17 ceĸ
- 0,18-0,22 ceĸ
- 0,06-0,08 сек

В отведениях V5 и V6 при блокаде левой ножки пучка Гиса комплекс QRS имеет вид:

- qR (R без особенностей)
- R (R обычно с зазубриной, широкий)
- •R (R высокий, узкий)
- Rs (R широкий, с закругленной вершиной, s малый)

Сегмент STv5-v6 при блокаде левой ножки пучка Гиса обычно:

- расположен выше изолинии
- имеет неопределенную форму
- расположен ниже изолинии
- расположен на изолинии

Зубец Тv5-v6 при блокаде левой ножки пучка Гиса обычно:

- отрицательный, симметричный
- положительный, симметричный
- положительный, асимметричный
- отрицательный, асимметричный

Электрическая ось сердца при полной блокаде левой ножки пучка Гиса обычно:

- нормальная
- резко отклонена влево
- расположена горизонтально или отклонена влево
- расположена вертикально

Характерные признаки блокады левой ножки пучка Гиса можно отметить в отведениях:

- I
- aVL
- V5 и V6
- aVF, III

Для неполной блокады левой ножки пучка Гиса характерна ширина QRS:

- 0,06-0,10сек
- 0,10-0,12 ceĸ
- 0,12-0,14 ceĸ
- 0,14-0,16 ceĸ

При блокаде передней ветви левой ножки пучка Гиса наиболее характерные признаки наблюдаются в:

- правых грудных отведениях
- левых грудных отведениях
- стандартных отведениях
- отведениях от конечностей

Главный ЭКГ признак блокады передней ветви левой ножки пучка Гиса:

- отклонение ЭОС влево (угол альфа •< -30 град), обычная форма и продолжительность желудочковых комплексов
- резкое отклонение ЭОС влево, уширенные и деформированные комплексы QRS
- резкое отклонение ЭОС вправо (угол альфа более +120 град.), нормальные желудочковые комплексы
- резкое отклонение ЭОС вправо

При блокаде передней ветви левой ножки пучка Гиса электрическая ось обычно:

- нормальная
- горизонтальная
- отклонена влево
- вертикальная

Какие ЭКГ признаки блокады задней ветви левой ножки пучка Гиса:

- резкое отклонение ЭОС влево (угол альфа более 30 град), обычная форма и продолжительность желудочковых комплексов
- резкое отклонение ЭОС влево, уширенные и деформированные комплексы QRS
- резкое отклонение ЭОС вправо (угол альфа более +120 град.), нормальные желудочковые

комплексы

• резкое отклонение ЭОС вправо. М-образные уширенные желудочковые комплексы в отв. V1,2

Для блокады задней ветви левой ножки пучка Гиса характерно:

- RIII>RII>RI, SI>RI
- QRS 0, 10 сек, S'I >S'II>S'III
- Q(S) AVR>RAVR
- SAVR>RAVR

Угол альфа ● -55 градусов, продолжительность комплекса QRS ● 0,10 сек. Дайте Ваше заключение:

- Полная блокада задней ветви левой ножки пучка Гиса.
- Неполная блокада передней ветви левой ножки пучка Гиса.
- Блокада передней ветви левой ножки пучка Гиса.
- Полная блокада левой ножки пучка Гиса

Угол альфа \bullet +20 градусов, продолжительность комплекса QRS \bullet 0,14 сек, время внутреннего отклонения в отведении V6 \bullet 0,09 сек. Дайте Ваше заключение:

- Неполная блокада правой ножки пучка Гиса
- Гипертрофия левого желудочка.
- Полная блокада передней ветви левой ножки пучка Гиса
- Полная блокада левой ножки пучка Гиса.

Угол альфа • +90 градусов, продолжительность комплекса QRS • 0,11сек, в отведении V1 отмечается комплекс типа qR, зубец Т инвертирован, в отведении V6 - комплекс типа RS. Дайте Ваше заключение:

- гипертрофия правого желудочка
- полная блокада задней ветви левой ножки пучка Гиса
- полная блокада правой ножки пучка Гиса
- блокада левой ножки пучка Гиса

Угол альфа • +80 градусов, в отведении V1 комплекс типа rSR, продолжительность его 0,14 сек., в отведении V6 зубец S широкий, неглубокий. Дайте Ваше заключение:

- гипертрофия правого желудочка
- неполная блокада правой ножки пучка Гиса
- полная блокада правой ножки пучка Гиса
- блокада задней ветви левой ножки пучка Гиса

Угол альфа • -10 град., продолжительность комплекса QRS • 0,10 сек, в левых грудных отведениях Rv6 > Rv5 > Rv4, вершины зубцов R - острые, в отведениях V1, V2 - зубцы S - глубокие. Дайте Ваше заключение:

- гипертрофия левого желудочка
- неполная блокада передней ветви левой ножки пучка Гиса
- полная блокада левой ножки пучка Гиса
- неполная блокада левой ножки пучка Гиса

Угол альфа • -65 град., продолжительность комплекса QRS • 0,11 сек. Дайте Ваше заключение:

• неполная блокада передней ветви левой ножки пучка Гиса

- блокада передней ветви левой ножки пучка Гиса
- полная блокада левой ножки пучка Гиса
- вариант нормы

Назовите основные причины отсутствия зубца Q в отведениях V5,V6 и I станд. отведении:

- неполная блокада правой ножки предсердно-желудочкового пучка Гиса.
- блокада передней ветви левой ножки пучка Гиса .
- рубцовые (фиброзные) изменения передней ветви предсердно-желудочкового пучка Гиса.
- вариант нормы.

Угол альфа \bullet -35 град., продолжительность комплекса QRS \bullet 0,15 сек., в отведении V6 и V5 зубец R широкий, деформированный, зубец g - отсутствует. Дайте Ваше заключение.

- неполная блокада задней ветви левой ножки пучка Гиса
- блокада левой ножки пучка Гиса с преимущественным поражением передней ветви
- блокада левой ножки пучка Гиса с преимущественным поражением задней ветви
- блокада передней ветви левой ножки пучка Гиса

К двухпучковым внутрижелудочковым блокадам относятся:

- неполная блокада левой ножки пучка Гиса
- Полная блокада правой ножки пучка Гиса
- сочетание неполной блокады правой ножки пучка Гиса и передней ветви левой ножки пучка Гиса
- полная блокада левой ножки пучка Гиса

При полной блокаде левой ножки пучка Гиса ширина комплекса QRS может быть:

- 0,10 ceĸ
- 0,11 ceĸ
- 0,16 ceĸ
- 0,08 сек

При атриовентрикулярной блокаде I степени интервал PQ может быть длительностью:

- 0,08 сек
- 0,10 ceĸ
- 0,11 ceĸ
- 0,26 ceĸ

Замедление проведения синусового импульса по миокарду предсердий называется:

- синоатриальной блокадой
- внутри (меж) предсердной блокадой
- атриовентрикулярной блокадой
- атриовентрикулярной блокадой 2 ст

Признаки межпредсердной блокады:

- 3. P•0.12 c, PQ•0.24 c
- з. P•0.10 c, расщеплен, расстояние между вершинами 0.02 c, PQ•0.11 c
- з. Р более 0.12 с, расщеплен, расстояние между вершинами 0.04 с
- PQ•0.28 c

При а-в блокаде І степени:

• PR более 0.20 сек., з. Р расщеплен, QRS узкий

- PR более 0.20 сек.
- PR более 0.20 сек., QRS широкий
- PR более 0.12 сек.

На ЭКГ одиночные желудочковые комплексы QRS «выпадают без предупреждения», PR стабильны, паузы равны 2RR:

- а-в блокада II степени I тип
- а-в блокада II степени II тип
- далеко зашедшая а-в блокада II степени, субтотальная
- а-в блокада I степени

На ЭКГ интервал PR постепенно удлиняется до выпадения QRS, пауза менее 2 RR, после паузы PR самый короткий:

- а-в блокада II степени I тип
- а-в блокада II степени II тип
- далеко зашедшая а-в блокада II степени, субтотальная блокада
- а-в блокада I степени

Основным признаком а-в блокады III степени является:

- а-в диссоциация
- блокада одной из ножек пучка Гиса в сочетании с мерцательной аритмией
- сочетание блокады типа Мобитц 2 с широкими комплексами QRS
- PR более 0.2 сек., QRS широкий

Сочетание мерцательной аритмии с полной а-в блокадой:

- синдром Морганьи-Адамс-Стокса
- болезнь Ленегра
- синдром Фредерика
- далеко зашедшая а-в блокада II степени

Синдром Морганьи-Адамс-Стокса – это:

- острая ишемия мозга и потеря сознания вследствие снижения ЧСС менее 20 ударов в минуту или асистолии сердца
- полная а-в блокада у лиц с выраженным атеросклерозом сосудов головного мозга
- полная а-в блокада в сочетании с мерцательной аритмией
- далеко зашедшая а-в блокада II степени, субтотальная блокада

Укажите уровень блокирования при а-в блокаде II степени II типа (Мобитц):

- а-в соединение
- ствол пучка Гиса и его ножки
- волокна Пуркинье
- левая ножка пучка Гиса

Показанием к имплантации ЭКС является:

- а-в блокада II степени типа Мобитц 2 с узкими комплексами QRS у лиц старше 60 лет с клиникой головокружений
- а-в блокада II степени типа Мобитц 2 с широкими комплексами QRS с клиникой головокружений у лиц любого возраста
- имплантанция ЭКС не показана ни по пункту а, ни по пункту б

• болезнь Ленегра

Имплантанция ЭКС показана:

- при а-в блокаде III степени (полной) проксимального типа без приступов МЭС
- при а-в блокаде III степени (полной) дистального типа без приступов МЭС
- при а-в блокаде III степени (полной) проксимального типа с приступами МЭС.
- болезнь Ленегра

Укажите уровень блокирования при а-в блокаде II степени II типа (Мобитц):

- ствол пучка Гиса и его ножки.
- А-В соединение
- Волокна Пуркинье
- Пучок Кента

ЭКГ-признаками атриовентрикулярной диссоциации являются:

- интервал PP > интервала RR
- желудочковый ритм не зависит от предсердного
- зубцы Р различной формы
- комплексы QRS резко деформированы

Признаками желудочковых захватов при атриовентрикулярной диссоциации является наличие на ЭКГ:

- выскальзывающих комплексов
- нормальных синусовых комплексов
- экстрасистол
- «эхо» комплексов

При идиовентрикулярном ритме:

- комплексы QRS нормальной ширины
- частота желудочковых сокращений меньше 20 в мин.
- комплексы напоминают блокаду ножек пучка Гиса, чсс < 50 в мин
- отмечаются сливные комплексы

Выскальзывающие сокращения характеризуются:

- укороченным интервалом сцепления
- интервалом сцепления, превосходящим обычное расстояние Р-Р
- большим разнообразием источников их происхождения
- наличием возвратных комплексов

Юношеская дыхательная аритмия проявляется:

- синусовой тахикардией
- синусовой аритмией
- экстрасистолией
- синдромом слабости синусового узла

Номотопные аритмии возникают из:

- синоатриального узла
- эктопического очага в желудочках
- атриовентрикулярного узла
- эктопического очага в предсердиях

Бигеминия характеризуется:

- синусовой аритмией
- атриовентикулярной блокадой
- экстрасистолой, возникающей после каждого синусового сокращения
- экстрасистолой, возникающей после двух синусовых сокращения

Идиовентрикулярный ритм сердечных сокращений возникает в случае когда:

- повышается автоматизм синусового узла
- роль водителя ритма выполняют волокна Пуркинье
- роль водителя ритма выполняют клетки атрио-вентрикулярного соединения
- возникают предсердные экстрасистолы
- •возникают желудочковые экстарсистолы

Узловой ритм сердечных сокращений возникает в случае когда:

- повышается автоматизм синусового узла
- роль водителя ритма выполняют волокна Пуркинье
- роль водителя ритма выполняют клетки атрио-вентрикулярного соединения
- возникают предсердные экстрасистолы

К аритмиям, связанным с патологией возбудимости относится:

- внутрижелудочковая блокада
- атриовентикулярная блокада
- синусовая брадикардия
- экстрасистолия

Что такое точка Венкебаха:

- частота сердечных сокращений сердца при которой развивается функциональная а-в блокада II степени
- момент выпадения комплекса QRS в атипичной периодике Венхебаха при а-в блокаде II степени
- момент начала периодики Венхебаха при сино-атриальной блокаде II степени I типа
- время развития а-в блокады II степени

Формирование аритмии по механизму ре – энтри заключается в:

- неполной атрио вентрикулярной блокаде
- блокаде ножки пучка Гиса
- одностороннем нарушении проведения возбуждения по основному пути проведения
- желудочковой экстрасистолии

Экстрасистола, возникающая упорядоченно после каждых двух синусовых сокращений, обозначается как:

- синусовая тахикардия
- бигеминия
- тригеминия
- квадригеминия

Синдром WPW обусловлен наличием в миокарде:

- аномального дополнительного проводящего пути
- эктопического водителя ритма
- аномального дополнительного источника импульсов
- срединной ветви левой ножки пучка Гиса

При синдроме WPW импульс проникает в желудочки по:

- пучку Венкебаха
- правому, левому пучку Кента
- Пучку Гиса
- атриовентрикулярному узлу

При синдроме WPW комплекс QRS:

- не изменен
- уширен деформирован
- похож на блокаду левой ножки пучка Гиса
- похож на блокаду правой ножки пучка Гиса

Интервал PQ при синдроме WPW:

- Укорочен до 0,08-0,10 сек
- удлинен свыше 0,20 сек
- не изменен
- равен примерно 0,16-0,17 сек

Обязательным признаком синдрома WPW является:

- ullet наличие Δ волны постоянного или преходящего характера в составе комплекса QRS
- наличие в анамнезе различных нарушений ритма
- наличие в анамнезе атриовентрикулярных блокад
- электрическая ось типа SI-SII-SIII

При типе A синдрома WPW

- комплекс QRS в отведениях V1 и V2 преимущественно направлен вверх
- комплекс QRS в отведениях V5 и V6 имеет форму QS
- электрическая ось вертикальная или близка к вертикальной
- Rv6 > Rv5 > Rv4, QSIII

При типе В синдрома WPW:

- комплекс QRS в отведениях V1 и V2 преимущественно направлен вниз
- в левых грудных отведениях преобладают зубцы R
- электрическая ось отклонена влево или расположена горизонтально
- электрическая ось типа SI-SII-SIII

Синдромом Вольфа – Паркинсона – Уайта клинически проявляется:

- экстрасистолией
- эпизодами пароксизмальной тахикардии.
- атриовентрикулярной блокадой
- брадикардией

Псевдорубцовые ЭКГ-признаки при синдроме WPW появляются за счет:

• Сочетания синдрома WPW с поворотом сердца верхушкой вперед.

- Отрицательной дельта-волной при любой локализации ДПП
- Локализации пучка Кента в левом желудочке
- аномального дополнительного источника импульсов

При синусовой тахикардии:

- расстояние PQ укорочено пропорционально ускорению ритма
- интервал QT укорачивается
- комплекс QRS имеет тенденцию к уширению
- инверсия з. Т

Для синусовой брадикардии характерно:

- уширение комплекса QRS до 0,14-0,15 сек.
- снижение сегмента ST ниже изолинии свыше 1,5 мм
- удлинение интервала QT и PQ.
- укорочение PQ.

При "ригидном" синусовом ритме разница между интервалами Р-Р:

- 0,05-0,15 сек
- 0,15-0,25 ceĸ
- меньше 0,05 сек
- меньше 0,02 сек

В основе синдрома слабости синусового узла лежит:

- снижение функции автоматизма синоатриального узла и/или замедление проведения импульса от клеток синоатриального узла к ткани предсердий
- снижение функции автоматизма атриовентрикулярного узла и/или замедление проведения импульса от клеток атриовентрикулярного узла к ткани желудочков
- повышение функции автоматизма синоатриального узла и/или замедление проведения импульса от клеток синоатриального узла к ткани предсердий
- снижение функции автоматизма синоатриального узла и/или замедление проведения импульса по системе Гиса-Пуркинье

ЭКГ признаки медленных выскальзывающих комплексов включают:

- ullet наличие на ЭКГ отдельных синусовых комплексов, источником которых являются импульсы из синоатриального узла, интервал R-R, предшествующий выскальзывающему комплексу, укорочен
- наличие на ЭКГ отдельных несинусовых комплексов, источником которых являются импульсы, исходящие из предсердий, атриовентрикулярного узла или желудочков, интервал R-R, предшествующий выскальзывающему комплексу, укорочен
- ullet наличие на ЭКГ отдельных несинусовых комплексов, источником которых являются импульсы, исходящие из предсердий, атриовентрикулярного узла или желудочков, интервал R-R, предшествующий выскальзывающему комплексу, удлинен
- ullet наличие на ЭКГ следующих друг за другом несинусовых комплексов, источником которых являются импульсы, исходящие из предсердий, атриовентрикулярного узла или желудочков, интервал R-R, предшествующий первому выскальзывающему комплексу, удлинён

Какие из перечисленных ЭКГ признаков характерны для миграции водителя ритма:

- нестабильный интервал P-Q(R)
- разные интервалы R-R, разные интервалы PQ, разная форма з.P
- резко выраженные колебания продолжительности интервалов R-R(P-P)
- все ответы верны

Какие из перечисленных ЭКГ признаков характерны для парасистолии:

- разные интервалы сцепления всех экстрасистолических комплексов
- правило «общего делителя»
- наличие сливных комплексов
- все в совокупности

Назовите вариант комбинированного нарушения ритма, характеризующегося одновременным образованием импульсов в синусовом и эктоническом центре и нарушением ретроградного проведения импульсов к синусовому узлу:

- парасистолия
- атриовентрикулярная диссоциация
- синдром преждевременного нарушения желудочков
- миграция водителя ритма

Какой вариант относится к неполной атриовентрикулярной диссоциации:

- изоритмическая атриовентрикулярная диссоциация
- изоритмическая атриовентрикулярная диссоциация с синхронизацией
- атриовентрикулярная диссоциация с интерференцией
- атриовентрикулярная диссоциация с одновременным возбуждением желудочков и предсердий

Что приводит к развитию пассивной формы атриовентрикулярной диссоциации:

- ullet угнетение автоматизма синоатриального узла, который становится меньше автоматизма атриовентрикулярного узла
- повышение автоматизма атриовентрикулярного узла, который становится выше автоматизма синоатриального узла
- повышение автоматизма как синусового, так и атриовентрикулярного узла
- снижение автоматизма синусового, атриовентрикулярного узла

Зубцы Р в «предсердных захватах» у больных с атриовентрикулярной диссоциацией:

- инвертированные
- обычные
- резко уширены
- низкоамплитудные

К замещающим ритмам относится:

- Синусовый ритм
- Миграция водителя ритма по предсердиям
- Синусовая брадикардия
- Ритм из атриовентрикулярного соединения

Укажите ЭКГ признаки синдрома WPW (Вольфа-Паркинсона-Уайта):

- Интервал P-Q(R) больше 0,12 сек, увеличение продолжительности и деформация комплекса QRST, наличие D-волны
- Интервал P-Q(R) меньше 0,12 сек, увеличение продолжительности и деформация комплекса QRST, наличие D-волны
- Интервал P-Q(R) меньше 0,12 сек, наличие неизмененных (узких) и недеформированных комплексов QRST, наличие D-волны
- Интервал P-Q(R) больше 0,12 сек, наличие неизмененных (узких) и недеформированных

комплексов QRST, наличие D-волны

Укажите ЭКГ признаки синдрома СLС (Клерка-Леви-Кристеско):

- Укорочение интервала P-Q(R), продолжительность которого не превышает 0,11 сек.
- Отсутствие в составе комплекса QRS дополнительной волны возбуждения D-волны
- Наличие неизмененных (узких) и недеформированных комплексов QRS
- Все в комплексе

Экстрасистолия – это преждевременное возбуждение и сокращение всего сердца или какоголибо его отдела, вызванное внеочередным импульсом, исходящим из:

- Предсердий
- АВ-соединения
- Желудочков
- Все ответы верны

Какие варианты правильного чередования экстрасистол и нормальных сокращений относят к аллоритмии:

- Мономорфность
- Политопность
- Тригеминия
- Все ответы верны

Наличие преждевременного деформированного зубца P, QRS похожий по форме на QRS синусового происхождения, наличие неполной компенсаторной паузы на ЭКГ характерно для:

- Предсердной экстрасистолы
- Предсердного выскальзывающего комплекса
- Экстрасистолы из атриовентрикулярного соединения
- Желудочковой экстрасистолы

Возвратные, реципрокные предсердные экстрасистолы:

- P-QRS-P
- QRS-P-QRS узкие
- QRS- P-QRS широкие
- P-QRS широкие -P

Возвратные, реципрокные узловые экстрасистолы:

- P-QRS-P
- QRS-P-QRS узкие
- QRS- P-QRS широкие
- P-QRS широкие -P

Возвратные, реципрокные желудочковые экстрасистолы:

- P-ORS-P
- QRS-P-QRS узкие
- QRS- P-QRS широкие
- P QRS узкие P

Преждевременное появление измененного уширенного (0,12 и более сек) QRS комплекса, отсутствие зубца Р перед преждевременным комплексом, наличие полной компенсаторной паузы на ЭКГ характерно для:

- Предсердной экстрасистолы
- Экстрасистолы из атриовентрикулярного соединения
- Желудочковой экстрасистолы
- Стволовой экстрасистолы

Интервал сцепления типичной экстрасистолы по сравнению с интервалом R-R (P-P) основного ритма:

- иногда укорочен
- всегда укорочен
- всегда удлинен
- иногда удлинен

Интервалы сцепления при монотопных экстрасистолах не отличается друг от друга более, чем на:

- 0,04 ceĸ
- до 0,06 сек
- 0,16 ceĸ
- 0,02 ceĸ

К аллоритмии относится:

- бигеминия, тригеминия
- парасистолия
- реципроктные комплексы
- деформация комплекса QRS

Для предсердных экстрасистол характерно:

- наличие зубца Р, предшествующего комплексу QRS, неполная компенсаторная пауза.
- изменение формы зубца Р по сравнению с синусовым зубцом Р
- резкая деформация комплекса QRS
- •полная компенсаторная пауза

При нижнепредсердных экстрасистолах:

- меняется ориентация зубцов Р в стандартных отведениях, интервал PQ укорочен.
- интервал PQ не изменен
- интервал PQ удлинен
- отмечается депрессия сегмента ST

При блокированных предсердных экстрасистолах комплекс QRS:

- практически не изменен
- резко деформирован
- отсутствует вовсе
- слегка деформирован

При экстрасистолах из атриовентрикулярного соединения зубец Р:

- на ЭКГ может отсутствовать
- может отмечаться на сегменте ST
- в стандартных отведениях меняет направление

• резко уширен

Для желудочковых экстрасистол характерно:

- выраженная деформация комплекса QRS, наличие полной компенсаторной паузы
- неполная компенсаторная пауза
- деформация зубца Р
- дискордантное расположение сегмента ST и зубца T

При желудочковых экстрасистолах предсердия:

- сокращаются от эктопического импульса
- сокращаются от синусового импульса
- не сокращаются вовсе
- возбуждаются ретроградно

Для левожелудочковых экстрасистол характерно:

- наличие комплекса QRS, похожего на блокаду правой ножки пучка Гиса
- наличие комплекса QRS, похожего на блокаду левой ножки пучка Гиса
- глубокие зубцы S во всех отведениях
- отсутствие дискордантности сегмента ST и зубца Т

Для правожелудочковых экстрасистол характерно наличие в отведениях:

- во всех грудных отведения зубцы R, преобладающей величины
- V1,V2 зубца S преобладающей величины
- I, aVL зубца S преобладаю оей величины
- III, aVF зубца R преобладающей величины

Интерполированные желудочковые экстрасистолы отличаются тем, что:

- не влияют на работу синусового узла
- возникают обычно на фоне брадикардии.
- не имеют компенсаторной паузы
- всё верно

Конкордантные верхушечные экстрасистолы:

- имеют неполную компенсаторную паузу
- во всех грудных отведениях имеют выраженные зубцы S
- имеют узкий комплекс QRS
- имеют, как правило, пониженный вольтаж

К 5 классу прогностической градации желудочковой экстрасистолии по B.Lown, 1975 года относят:

- Единичные мономорфные желудочковые экстрасистолы (менее 30 в час)
- Частые мономорфные желудочковые экстрасистолы (более 30 в час)
- Пароксизм неустойчивой желудочковой тахикардии (3 и более)
- Парные желудочковые экстрасистолы

Какова ширина комплекса QRS на электрокардиограмме при предсердной пароксизмальной тахикардии:

• 0,12 сек и более

- 0,18-0,2 ceĸ
- менее 0,10 сек
- менее 0,5 сек

Охарактеризуйте зубец Р на электрокардиограмме при предсердной пароксизмальной тахикардии:

- зубец Р отсутствует
- зубец P есть, но не связан с комплексом QRS
- зубец Р есть, связан с комплексом QRS
- (-) P

Какова частота сердечных сокращений при пароксизмальных тахикардиях:

- 60-140 ударов в 1 мин.
- 350-400 ударов в 1 мин.
- 140-250 ударов в 1 мин.
- 60-80 в мин.

Синусовая реципрокная тахикардия:

- P (+), QRS узкие, удлинение PQ, есть посттахикардиальная пауза.
- Есть период «разогрева»
- Укорочение PQ
- з. Р отрицательные

Предсердная реципрокная пароксизмальная тахикардия:

- Р экстрасистола заводит пароксизм, не похожа на «пароксизмальные» Р, нет «разогрева», (-) з.Р, есть компенсаторная пауза
- Укорочение РQ, есть период «разогрева.
- (+) з. Р, узкие QRS, нет компенсаторной паузы
- Частота более 220 в мин

Предсердная очаговая (фокусная) пароксизмальная тахикардия:

- Начало с экстрасистолы, есть «разогрев», АВ-проведение 1:1, (-) з. Р
- Укорочение РО, (+) з. Р, нет разогрева, компенсаторная пауза
- Частота стабильная, более 250 в мин.
- Нет периода «разогрева», есть компенсаторная пауза

Предсердная тахикардия с антероградной AB-блокадой II ст.

- есть «разогрев», АВ-блокада возникает от начала тахикардии, (+) Р.
- Нет изолинии АВ-блокада 2:1
- Частота стабильная, более 250 в мин.
- Нет периода «разогрева».

Многоочаговая «хаотичеакая» предсердная тахикардия:

- разные зубцы P по форме, амплитуде и полярности, разные PP и PQ, AB-проведение 1:1, QRS узкие,
- Укорочение PQ, (+) з. P
- Частота стабильная, более 250 в мин.
- Нет периода «разогрева», проведение 2:1

АВ-реципрокные пароксизмальные и хронические тахикрдии:

- пусковая предсердная экстрасистола с критическим удлинением PQ и коротким интервалом сцепления, з.P не виден, RP < PR
- Возможна А-В блокада II ст.
- Укорочение PQ, (+) з. Р.
- Нет периода «разогрева», RP > PR

Хроническая (постоянно-возвратная) АВ реципрокная тахикардия (скрытый ретроградный медленный ритм)

- начало тахикардии без экстрасистолы, при учащении синусового ритма, до критического укорочения РР, тахикардитические цепи бывают сплошными или фрагментированными, прерываются синусовыми комплексами.
- Возможна А-В блокада II ст.
- Разные зубцы Р по форме, амплитуде и полярности, разные РР и PQ, AB проведение 1:1, QRS узкие.
- Частота 120 в мин. RP > PR

Пароксизмальные AB реципрокные (круговые) тахикардии при синдроме WPW бывают:

- Ортодромные, антидромные.
- Очаговые.
- Фокусные.
- С А-В блокадой.

Ортодромная AB реципрокная ПТ при WPW:

- Экстрасистола с удлиненным PQ, и аберрантный QRS, узкие QRS (без дельта-волны), без «разогрева». R-R равны, частота 200 в мин.3. P (-) позади QRS. RP> 100 мсек.
- Пусковая предсердная экстрасистола с критическим удлинением PQ и коротким интервалом сцепления, з.P не виден, RP <PR.
- Возможна A-B блокада II ст. есть разогрев RP > PR
- Разные зубцы Р по форме, амплитуде и полярности, разные РР и PQ, AB- проведение 1:1, QRS узкие.

АВ реципрокные ПТ с широкими комплексами QRS:

- начало с предсердной экстрасистолы, которая распространяется через ДПП, поэтому имеет широкий QRS, далее мономорфные широкие, деформированные комплексы QRS с большой «дельта» волной, чсс 200 в мин, з.Р(-).
- ullet пусковая предсердная экстрасистола с критическим удлинением PQ и коротким интервалом сцепления, 3.P не виден, RP <PR
- начало тахикардии без экстрасистолы, при учащении синусового ритма, до критического укорочения РР.
- Разные зубцы Р по форме, амплитуде и полярности, разные PP и PQ, AB- проведение 1:1, QRS широкие.

Эффект Кумеля-Слама:

- Если функциональная, тахизависимая блокада развивается в том желудочке, к которому присоединяется ДПП, то это приводит к внезапному удлинению RP, соответственно, к урежению ритма тахикардии. Если функциональная блокада возникает в желудочке, не имеющим ДПП, то чсс сохраняется высокой.
- Появление A-B блокады II ст. при чсс > 220 в мин.
- Изменение формы з.Р в зависимости от направления проведения в ДПП.

• Появление экстрасистолы в период пароксизмальной тахикардии.

Очаговые (фокусные) пароксизмальные и хронические тахикардии из АВ соединения:

- высокая чсс 220 и более, узкие QRS, возможна их аберрация, зубцы Р инвертированы II,III,AVF
- Разные зубцы Р по форме, амплитуде и полярности, разные РР и PQ, AB- проведение 1:1, QRS широкие.
- Пусковая предсердная экстрасистола с критическим удлинением PQ и коротким интервалом сцепления, з.P не виден, RP<PR.
- Начало тахикардии без экстрасистолы, при учащении синусового ритма, до критического укорочения РР.

Какая форма зубца Р характерна для предсердной пароксизмальной тахикардии:

- Зубец Р положительный
- Зубец Р отрицательный
- Зубец Р двухфазный
- Все ответы правильные

Какова ширина комплекса QRS на ЭКГ при желудочковой пароксизмальной тахикардии:

- менее 0,12 сек
- до 0,14 сек
- 0,08 ceĸ
- менее 0,10

Пароксизм желудочковой тахикардии на электрокардиограмме характеризуется:

- регистрируется подряд 3 и более желудочковых экстрасистол
- регистрируется подряд 2 и более желудочковые экстрасистолы
- регистрируется подряд 6 и более желудочковых экстрасистол в сутки
- регистрируется подряд 2 и более желудочковые экстрасистолы в сутки

Правожелудочковая пароксизмальная тахикардия характеризуется сочетанием следующих изменений на ЭКГ:

- похожа на блокаду левой ножки пучка Гиса, в отведениях V1,V2 в комплексе QRS доминирует зубец R, в отведениях V1,V2 в комплексе QRS доминирует зубец S
- похожа на блокаду левой ножки пучка Гиса, в отведениях V5,V6 в комплексе QRS доминирует зубец R, в отведениях V1,V2 в комплексе QRS доминирует зубец S
- похожа на блокаду правой ножки пучка Гиса, в отведениях V5,V6 в комплексе QRS доминирует зубец R, в отведениях V1,V2 в комплексе QRS доминирует зубец R
- похожа на неполную блокаду правой ножки пучка Гиса

Левожелудочковая пароксизмальная тахикардия характеризуется сочетанием следующих изменений на ЭКГ:

- похожа на блокаду правой ножки пучка Гиса, в отведениях V1,V2 в комплексе QRS доминирует зубец R, в отведениях V5,V6 в комплексе QRS доминирует зубец S
- похожа на блокаду левой ножки пучка Гиса, в отведениях V5,V6 в комплексе QRS доминирует зубец R, в отведениях V1,V2 в комплексе QRS доминирует зубец S
- похожа на блокаду правой ножки пучка Гиса, в отведениях V5,V6 в комплексе QRS доминирует зубец R, в отведениях V1,V2 в комплексе QRS доминирует зубец S
- похожа на неполную блокаду правой ножки пучка Гиса

С чего начинается приступ предсердной пароксизмальной тахикардии по механизму «reentry»:

- с предсердной экстрасистолы с критическим интервалом сцепления
- первый эктопический зубец Р появляется в поздней фазе диастолы
- с предсердной экстрасистолы с удлиненным интервалом PQ
- с желудочковой экстрасистолы

ЭКГ - признаки, отличающие предсердную пароксизмальную тахикардии по механизму «reentry» от синусовой пароксизмальной тахикардии:

- высокая частота ритма, наслоение зубца Р на зубец Т предыдущего комплекса
- продолжительность приступа
- неравенство RR-интервалов
- положение зубца Р, его инверсия

При проведении чреспищеводного электрофизиологического исследования основным отличием эктопической предсердной или a-v тахикардии от пароксизмальных тахикардий по механизму «re-entry» является:

- тахикардия легко навязывается и подавляется стимуляцией предсердий
- тахикардия не навязывается и не подавляется стимуляцией предсердий
- тахикардия навязывается и подавляется только пачкой импульсов
- тахикардия легко навязывается

Реципрокная а-v тахикардия с вовлечение ДПП развивается по механизму:

- «micro-re-entry»
- «macro-re-entry»
- постдеполяризации
- нарушения реполяризации

Продолжительность интервала RP при реципрокной a-v тахикардии с вовлечением дополнительных путей проведения:

- RP менее 0.10′′
- RP более 0.10′′
- RP более 0.20′′
- RP более 0.24′′

Продолжительность интервала RP при реципрокной a-v узловой тахикардии:

- RP менее 0.10′′
- RP равен 0.11-0.12′′
- RP более 0.12′′
- RP более 0.20′′

При ортодромной пароксизмальной тахикардии у больного с синдромом WPW:

- ЭРП дополнительного пути > ЭРП а-в узла
- ЭРП дополнительного пути < ЭРП а-в узла
- ЭРП дополнительного пути ЭРП а-в узла
- RP более 0.12′′

Причина внезапной смерти у больного с синдромом WPW:

• пароксизм фибрилляции пресердий с высокой частотой проведения на желудочки

- пароксизм а-v узловой реципрокной тахикардии
- пароксизм реципрокной тахикардии с вовлечением ДПП
- синдром Фредерика

Пусковым моментом желудочковой пароксизмальной тахикардии в первые часы острого инфаркта является чаще всего:

- ранняя желудочковая экстрасистола типа R на T
- желудочковая экстрасистола со средним интервалом сцепления
- поздняя желудочковая экстрасистола
- PR более 0.12′′

Двунаправленная пароксизмальная желудочковая тахикардия является:

- злокачественной формой желудочковой тахикардии
- по течению и прогнозу не отличается от тривиальной желудочковой тахикардии
- приступы кратковременны, купируются самостоятельно
- головокружением, потерей сознания

Двунаправленная пароксизмальная желудочковая тахикардия сочетается чаще всего:

- с хронической ИБС
- с врожденными пороками сердца
- с синдромом удлиненного интервала QT на фоне органических заболеваний сердца или без них
- с тиреотоксикозом

Основное ЭКГ отличие крупноволнового трепетания желудочков от желудочковой тахикардии:

- амплитуда комплексов QRS
- отсутствие дифференциации ST-интервала и зубцов Т
- ширина комплексов QRS
- PR более 0.12′′

Конкордантные базальные экстрасистолы:

- имеют полную компенсаторную паузу
- имеют инвертированный зубец Р
- во всех грудных отведениях имеют выраженный зубец R
- часто бывают типа «R-на-Т»

Термин «суправентрикулярная пароксизмальная тахикардия»:

- отражает невозможность более точного установления формы пароксизмальной тахикардии
- связан с необходимостью обобщения результатов анализа
- отражает все формы пароксизмальных тахикардий
- включает в себя правожелудочковые пароксизмальные тахикардии

При фибрилляции предсердий:

- отсутствует сокращение предсердий как единого целого
- желудочки сокращаются самостоятельно
- комплексы QRS уширены
- имеют инвертированный зубец Р

При мерцании число хаотических возбуждений предсердий:

- от 220 до 340
- от 350 до 700
- от 700 до 860
- свыше 860

Предсердные волны f наиболее четко определяются в отведениях:

- I и avI.
- V5 и V6
- II. III. avF
- V1, V2

Число предсердных волн F при трепетании

- менее 200 в мин.
- 220-350 в мин.
- 350-400 в мин.
- более 400 в мин.

Укажите локализацию желудочковой экстрасистолы, если комплекс QRS в отв. V1 направлен вверх, а в отведении V6 преимущественно вниз:

- правожелудочковая
- левожелудочковая
- конкордантная базальная
- из верхушки левого желудочка

Назовите главный ЭКГ-признак пароксизмальной желудочковой тахикардии:

- деформация и уширение желудочкового комплекса QRS более 0,12 сек
- полная диссоциация желудочковых и предсердных комплексов
- временами одиночные «захваченные» (синусового происхождения) комплексы QRST
- конкордантное направление комплекса QRS и зубца Т

Назовите характерные ЭКГ-признаки предсердной тахикардии с АВ-блокадой, отличающие это нарушение ритма от трепетания предсердий:

- пилообразная форма предсердных волн
- регулярность предсердных зубцов
- наличие изоэлектрического интервала между зубцами Р
- Наличие волны f.

Назовите наиболее характерные ЭКГ-признаки мерцания предсердий:

- ритмичность волн мерцания
- хаотичность волн мерцания, выраженная аритмия сокращений желудочков
- высокая частота зубцов Р
- высокая частота QRS.

Назовите какие ЭКГ-изменения чаще всего предшествуют мерцанию (трепетанию) предсердий:

- миграция суправентрикулярного водителя ритма
- частичная АВ-блокада

- нарушение внутрипредсердной проводимости
- политопные предсердные экстрасистолы

Понятие арборизационная блокада используется при:

- СССУ
- инфаркте миокарда с преимущественным поражением волокон Пуркинье
- A-B блокаде III степени
- Геморрагическом инсульте

Признаком подострой стадии инфаркта миокарда является:

- монофазная кривая
- ST выше изолинии, отрицательный зубец Т
- патологический зубец Q
- ST на изолинии, патологический зубец Q, отрицательный зубец T

При инфаркте перегородочной области левого желудочка изменения ЭКГ будут в отведениях:

- I, II, aVL
- V1-V3
- I, aVL
- V3, V4

При инфаркте боковой стенки изменения ЭКГ будут в отведениях:

- I. II. aVL
- V1-V3
- V3, V4
- aVL, V5, V6

Поражение какого элемента проводящей системы сердца наиболее опасно при развитии инфаркта миокарда в области задней части межжелудочковой перегородки:

- сино-атриального узла
- атриовентрикулярного узла
- предсердных пучков
- пучка Гиса

Какие из указанных изменений ЭКГ могут возникать при приступе стенокардии:

- патологический зубец Q
- подъем сегмента ST, депрессия сегмента ST, появление отрицательного зубца Т
- атрио-вентрикулярная блокада
- преходящая блокада ножек пучка Гиса

Какие из указанных изменений ЭКГ характерны для инфаркта миокарда:

- патологический зубец Q, конкордантный подъем сегмента ST
- изоэлектричный сегмент ST
- дискордантная депрессия сегмента ST
- низкий вольтаж зубца Р в стандартных отведениях

Что относится к реципрокным признакам инфаркта миокарда задней базальной стенки левого желудочка:

- подъем сегмента ST в отведениях V1-V4
- депрессия сегмента ST в отведениях V1-V3
- увеличение амплитуды R отведениях V1-V3
- появление зубца Q в отведениях V1-V4

Укажите признаки заднего инфаркта миокарда:

- подъем сегмента ST в отведениях V1-V4
- депрессия сегмента ST в отведениях V1-V3
- патологический Q во II, III, avF, увеличение амплитуды R отведениях V1-V3
- появление зубца Q в отведениях V1-V4

Что представляет собой «ложная нормализация» ЭКГ:

- исчезновение признаков инфаркта миокарда в течение часов суток без проведения процедур восстанавливающих коронарный кровоток
- появление нарушений ритма
- появление блокад ножек п. Гиса
- миграция водителя ритма

Когда происходит «ложная нормализация» ЭКГ при инфаркте миокарда:

- при развитии повторного инфаркта миокарда на периферии первичного
- при развитии аневризмы левого желудочкам
- при развитии повторного инфаркта на противоположной стенке
- при развитии синдрома Дресслера

ЭКГ-признаки хронической аневризмы левого желудочка:

- депрессия сегмента ST
- блокада левой ножки п. Гиса
- застывшая кривая в острую стадию инфаркта
- зазубренный высокоамплитудный R

Признаки циркулярного инфаркта миокарда выявляются в отведениях:

- I,avF, V1-V2
- II, V5-V6
- avR, V7-V8
- II, III, avF, V3-V6, D, A,I

Продолжительность подострой стадии инфаркта миокарда:

- от 1-2 часов до 1-3 дней
- до 8 недель
- 2-5 недель
- 30 минут

Какие изменения ЭКГ отражают переход острой стадии в подострую:

- углубление зубца Q
- уменьшение глубины зубца Q
- снижение сегмента ST на изолинию, уменьшение реципрокных изменений
- блокада левой ножки п. Гиса

Под ишемией миокарда понимают:

- нарушение процесса деполяризации
- мелкоочаговый некроз
- уменьшение кровоснабжения участков миокарда
- процесс необратимых изменений в миокардинальных волокнах

Для субэндокардиальной ишемии миокарда характерным является:

- двухфазная форма зубца Т
- широкий зубец Т
- высокий зубец Т, горизонтальная депрессия ST
- симметричный зубец Т

Повреждение миокарда:

- может переходить в ишемию
- может переходить в рубец
- не может продолжаться долго, может переходить в некроз
- как правило, протекает длительно

На ЭКГ крупноочаговое острое повреждение проявляется обычно:

- появлением глубоких зубцов S
- изменениями сегмента ST
- появлением глубоких зубцов Q
- изменениями зубца Т

При трансмуральном повреждении отмечают:

- подъем сегмента ST над изолинией выпуклостью к верху
- горизонтальное смещение сегмента ST ниже изолинии
- появление зазубрин на комплексе QRS
- инверсию зубца Т

При субэндокардиальном повреждении миокарда сегмент ST расположен:

- выше изолинии с дугой, обращенной выпуклостью кверху
- выше изолинии с дугой, обращенной выпуклостью книзу
- ниже изолинии с дугой, обращенной выпуклостью кверху
- ниже изолинии с дугой, обращенной выпуклостью книзу

На наличие зоны некроза в миокарде указывает:

- отрицательный «коронарный» зубец Т
- •снижение вольтажа электрокардиограммы
- наличие патологического зубца Q
- монофазный объем сегмента ST

Для стадии повреждения при крупноочаговом инфаркте миокарда характерно:

- длительность течения свыше 3-х суток
- подъем сегмента ST в виде монофазной кривой
- обязательное наличие патологического зубца Q на ЭКГ
- инверсия зубца Т

Острая стадия крупноочагового инфаркта миокарда характеризуется:

• продолжительностью обычно до 2-3 недель

- наличием зоны ишемии, повреждения и некроза
- наличием только зоны ишемии и некроза
- наличием только зоны повреждения и некроза

На протяжении острой стадии крупноочагового инфаркта миокарда отмечаются динамические изменения:

- патологического зубца Q
- сегмента ST и з Т
- зубца Т
- амплитуды зубца R

Подострая стадия крупноочагового инфаркта миокарда отличается:

- отсутствием зоны ишемии
- отсутствием зоны повреждения
- стабилизацией зоны некроза
- стабилизацией зоны ишемии

Признаками рубцовой стадии крупноочагового инфаркта миокарда является наличие на ЭКГ:

- смещения сегмента ST
- патологического зубца Q
- выраженных зазубрин на зубце R
- изменений формы зубца Т

Для субэндокардиального инфаркта миокарда характерно:

- образование патологических зубцов Q
- наличие «застывшей» ЭКГ
- длительная депрессия сегмента ST, выпуклостью книзу
- некоторое уменьшение амплитуды зубца R

Для интрамурального инфаркта миокарда характерно:

- снижение или деформация зубца R
- образование патологических зубцов Q
- появление отрицательного «коронарного» зубца Т
- депрессия сегмента ST

Для переднеперегородочного инфаркта миокарда характерны прежде всего изменения в отведениях:

- V3R-V4R
- V4-V6
- V1-V2(V3)
- S1-S4 (по Слапаку)

Для инфаркта миокарда передневерхушечной области сердца характерны изменения в отведениях:

- V4 (иногда V3 и V5)
- Anterior (πο Heбу)
- Dorsalis (πο Heбy)
- avL, I

Для переднебокового инфаркта миокарда характерны изменения в отведениях:

Anterior (по Небу)

- V4-V6
- I, avL
- inferior

Для высокого переднебокового инфаркта миокарда характерны изменения в отведениях:

- V1-V6
- V1-V5
- I, AVL
- V3R-V4R

Заднебазальный инфаркт миокарда имеет характерные изменения в отведениях:

- AVF, III, II
- V7 − V9, V1 − V2
- V3R-V4R
- V5 -V6

Заднедиафрагмальный инфаркт миокарда имеет характерные изменения в отведениях:

- AVF, III, II
- V7 − V9, V1 − V2
- V3R-V4R
- V5 -V6

Во время приступа стенокардии на ЭКГ может отмечаться:

- депрессия сегмента ST
- инверсия зубца Т
- увеличение амплитуды зубца Т
- уменьшение амплитуды зубца Т

Стенокардия Принцметала проявляется на ЭКГ:

- преходящим подъемом сегмента ST
- инверсией зубца Т
- регистрацией монофазной кривой
- уменьшение амплитуды зубца Т

Когда проводимость импульса по желудочкам замедлена, то:

- зубец Т приобретает дискордантное положение
- зубец Т конкордантен комплексу QRS
- зубец Т не выражен
- зубец Т уширен

ЭКГ-признаки гиперкалиемии обычно являются:

- удлинение интервала P-Q
- уширение комплекса QRS
- снижение предсердной активности
- высокий остроконечный Т

Отведения ЭКГ по Слапаку могут быть информативны при:

- гипертрофии предсердий
- гипертрофии правого желудочка
- заднебазальном инфаркте
- заднедиафрагмальном инфаркте

Что из перечисленного не является ЭКГ-признаком острого инфаркта миокарда:

- удлиненный интервал P-R
- депрессия сегмента S-T
- инверсия зубца Т
- подъем сегмента S-T

ЭКГ-признаки хронического легочного сердца могут быть:

- отклонение электрической оси сердца более +110
- отношение R/Q в AVR более 1
- отношение R/S в V1 более 1
- все выше перечисленное

Наиболее характерными признаками синоаурикулярной блокады являются:

- периодическое выпадение отдельных комплексов
- увеличение интервала P-Q
- двугорбный зубец Р
- трепетание предсердий

Для полной атриовентрикулярной блокады проксимального типа характерно:

- низкая частота сокращений желудочков (менее 40 в мин), QRS > 0,14 сек.
- «узкий» комплекс QRS
- блокада левой ножки пучка Гиса
- различные по продолжительности интервалы R-R

Зубец Р после QRS это:

- экстрасистола из АВ-соединения
- предсердная экстрасистола
- желудочковая экстрасистола
- стволовая экстрасистола

Продолжительность интервала PQ больше 0,20. Это характерно для:

- полной атриовентрикулярной блокады
- замедления атриовентрикулярной проводимости I ст.
- блокады ножек пучка Гиса
- стволовой экстрасистолы

Наиболее часто при гипокалиемии наблюдается на ЭКГ:

- эктопическая активность
- уплощение зубца Т
- удлинение интервала PQ
- увеличение зубца Т

Внезапное исчезновение зубца Р на ЭКГ может указывать на:

- желудочковую тахикардию
- ритм из АВ-соединения
- бигеминию
- АВ-блокады I степени

На ЭКГ в отведении V1, V2 сегмент S-T приподнят над изолинией, дугообразный, переходит в отрицательный зубец Т. Что это:

- инфаркт переднебоковой стенки левого желудочка
- инфаркт задней стенки левого желудочка
- инфаркт переднеперегородочной стенки левого желудочка
- заднебазальный инфаркт

В каких из перечисленных отведениях обычно регистрируются прямые признаки переднеперегородочного инфаркта миокарда:

- V1-V2 (V3)
- I, AVL
- II, III/ AVF
- II, AVR, V4

Для безболевых эпизодов ишемии, выявляемых при суточном мониторировании характерны все перечисленные признаки кроме:

- ишемическая депрессия ST>1 мм
- продолжительность эпизодов более 1 минуты
- интервалы между эпизодами > 1 мин
- сочетание безболевых эпизодов с типичными болевыми

Какой индекс реакции артериального давления на нагрузку соответствует гипертонической реакции:

- 1-4
- \bullet 0,8-0,9
- меньше 0,7
- больше 4

Какой уровень нагрузки считается высоким для женщин до 60 лет, перенесших ИМ в данном календарном году:

- больше 50 Вт.
- больше 75 Вт.
- больше 100 Вт.
- больше 25 BT

Какая ВЭМ - проба расценивается как положительная:

- не достигнута субмаксимальная ЧСС (отказ пациента от проведения дальнейшего исследования)
- появление во время пробы объективных признаков ишемии миокарда (электрокардиографические критерии), независимо от развития или отсутствия приступа стенокардии
- достигнута субмаксимальная ЧСС
- возникла частая ЖЭС

Максимальная мощность при проведении раннего нагрузочного теста:

- 50 Bt.
- 75 Bt.
- 100 Bt.
- 125 Вт.

Максимальная ЧСС при проведении раннего нагрузочного теста согласно рекомендациям Д.М.Аронова:

- 110 в мин.
- 120 в мин.
- 130 в мин.
- 140 в мин.

Что не относится к критериям прекращения пробы с физической нагрузкой:

- достижение субмаксимальной ЧСС
- отказ пациента от дальнейшего проведения пробы
- развитие приступа стенокардии
- частая предсердная экстрасистолия

Что не относится к абсолютным противопоказаниям к проведению проб с физической нагрузкой:

- острый миокардит
- расслаивающая аневризма аорты
- сахарный диабет в стадии декомпенсации
- отказ пациента от проведения нагрузочной пробы

Какой индекс реакции артериального давления на нагрузку соответствует нормотонической реакции:

- 1-4
- \bullet 0,8-0,9
- меньше 0,7
- больше 4

Какой уровень нагрузки считается высоким для мужчин после 60 лет, перенесших ИМ в данном календарном году:

- больше 50 Вт.
- больше 100Вт.
- больше 125 Вт.
- больше 25 Вт.

Укажите абсолютные противопоказания для проведения ВЭМ:

- постинфарктная аневризма левого желудочка, фибриляция желудочков в анамнезе, блокады ножек пучка Гиса на фоне хронической ИБС
- острый септический эндокардит, ТЭЛА, острые внесердечные заболевания с повышением температуры тела
- нарушение мозгового кровообращения в анамнезе, умеренная артериальная и легочная гипертензия, невыраженный мышечный субаортальный стеноз
- ОРВИ

Какое отведение ЭКГ отражает 90% всех ишемических депрессий ST-сегмента при ВЭМ:

- AVF
- V6
- V5
- AVL

Критерии прекращения пробы с физической нагрузкой:

- ангинозная боль + «ишемическая» депрессия ST-сегмента
- «ишемическая» депрессия ST-сегмента + падение АД на 10-20 мм.рт.ст. без ангинозной боли
- пункт а и б
- головокружение

Отметьте те критерии прекращения пробы с физической нагрузкой, которые расцениваются как тест положительный в диагностике ИБС:

- повышение АД > 220/120, сильная одышка или удушье
- бледность, тошнота, головокружение + пароксизм мерцательной аритмии на ЭКГ
- депрессия ST –сегмента > 1 мм + болевой синдром
- экстрасистолия

Отметьте те критерии прекращения пробы с физической нагрузкой, которые не являются специфическими в диагностике ИБС:

- частая экстрасистолия, более 4:40, в том числе спаренная и политопная, приступ пароксизмальной тахикардии
- тахизависимая блокада ПНПГ, AV блокада 1 или 2 степени
- пункт а и б
- горизонтальная депрессия ST

Причины, лежащие в основе «неполных» тестов (не доведенных до субмаксимальной мощности):

- боли в икроножных мышцах, физическая усталость, одышка
- раннее повышение АД> 220/120 мм.рт.ст., головокружение, тошнота, головная боль
- пункт а и б
- прием препаратов

Укажите причины ложно - отрицательных тестов при ВЭМ:

- однососудистое поражение, хорошее развитие коллатералей
- возникновение транзиторной ишемии миокарда одновременно на противолежащих стенках ЛЖ с псевдонормализацией ЭКГ
- пункт а и б
- женский пол

Возможно ли проведение ВЭМ у больных с нестабильной стенокардией:

- является абсолютным противопоказанием
- возможно в условиях специализированного отделение (учреждения) на фоне антиангинальной терапии после устранения болевого синдрома
- возможно после проведения антиангинальной терапии в амбулаторных условиях
- возможно

Цель проведения пробы с физической нагрузкой у больных нестабильной стенокардией:

- оценка адекватности проводимой терапии
- отбор пациентов на коронароангиографию
- пункт а и б
- адекватность наблюдения

Преимущества тредмилметрии перед велоэргометрией:

- физиологичность пробы
- меньшая степень прироста АД при увеличении мощности нагрузки
- пункты а и б
- уменьшает возврат крови

Холтеровское мониторирование при наличии постоянной формы мерцательной аритмии:

- показано для оценки частоты сердечных сокращений в течение суток
- не информативно
- можно проводить при наличии сопутствующей ИБС или при подозрении на ИБС
- противопоказано

При подборе антиаритмических препаратов положительным эффектом считается:

- снижение числа желудочковых экстрасистол на 70% и более
- уменьшение числа приступов желудочковой тахикардии на 100%
- и то, и другое
- снижение числа желудочковых экстрасистол на 50%

По данным суточного мониторирования признаком дисфункции синусового узла считается:

- синусовые паузы > 2-4 сек.
- синусовая брадикардия > 50 уд. в мин.
- синусовая аритмия с разницей интервалов RR до 0.2 сек.
- предсердные экстрасистолы

Показано ли суточное мониторирование ЭКГ больным с перемежающейся хромотой:

- мало информативно
- показано больным с облитирующим атеросклерозом нижних конечностей с клиникой или без клиники ИБС
- показано всем группам больных с перемежающейся хромотой
- можно проводить при наличии сопутствующей ИБС или при подозрении на ИБС

Для оценки обратимости обструкции дыхательных путей при выполнении фармакологического бронходилатационного теста рассчитывают:

- абсолютный прирост ОФВ1 в мл
- отношение абсолютного прироста ОФВ1, к исходному значению ОФВ1 в %
- отношение абсолютного прироста ОФВ1 к должному значению в %
- все верно

Бронходилатационный тест может быть диагностически значимым при исходной легочной функции менее или равной:

- 80% должной
- 60% должной
- 100% должной
- 50% должной

Рекомендуемое время для оценки обратимости обструкции дыхательных путей при выполнении фармакологического бронходилатационного теста с использованием сальбутамола в дозе 400 мкг (4 дозы) составляет:

- 10-15 мин
- 15-30 мин

- 30-45 мин
- 45-60 мин

Критериями положительного бронходилатационного теста не являются:

- Прирост ОФВ1 на 15% от должного значения
- Прирост ОФВ1 на 160 мл от исходного значения
- прирост МОС25-75 на 25% от исходного значения
- Клиническое улучшение самочувствия

Не являются противопоказанием к провокационному тестированию:

- острые респираторные инфекции или вакцинации в течение последнего месяца
- обострение бронхолегочного заболевания
- исходная величина ОФВ1 менее 80% от должной величины
- выраженные бронхоспастические реакции на ингаляции лекарственных веществ в анамнезе

Для провокации бронхоспазма используют:

- Растворы метахолина и гистамина
- Сухой холодный воздух
- Физическую нагрузку
- Все верно

Критериями положительного метахолинового теста являются все, кроме:

- Снижение ОФВ1 на 10% от исходного уровня
- Снижение SGaw на 40% от исходного уровня
- Снижение МОС25-75 на 25% от исходного уровня
- Снижение ОФВ1 на 20%

Спирометрия измеряет:

- ДО, РОвд, РОвыд, ЖЕЛ
- ОЕЛ
- ФЖЕЛ, МОД, МВЛ
- ФЖЕЛ

Стандартное спирографическое исследование включает измерение:

- ДО, РОвд, РОвыд, ЖЕЛ, ФЖЕЛ, МОД, МВЛ, ЧД
- •ОЕЛ, ОО, РОВд, РОвыд
- ПОС, МОС 25-75, ОО, ФЖЕЛ
- ФЖЕЛ, ОО, ОЕЛ

По кривой «поток-объем» форсированного выдоха можно измерить:

- ДО, РОвд, РОвыд, ЖЕЛ, ФЖЕЛ, МОД, ЧД, ПОС, МОС 25-75
- ОЕЛ, ОО
- парциальное давление газов выдыхаемого воздуха, потребление кислорода
- ФЖЕЛ

Бодиплетизмография позволяет измерить:

- ОЕЛ, ОО
- •ДО, МОД, ЖЕЛ, МВЛ
- •ФЖЕЛ, МОС 25-75
- MOC 25-75

Рестриктивное нарушение дыхания заключается в:

- нарушении диффузии газов в легких
- затруднении расправления и спадения легких при дыхании
- затруднении прохождения воздуха по дыхательным путям
- затруднении расправления грудной клетки

Обструктивное нарушение дыхания наблюдается в частности при:

- идеопатическом фиброзирующем альвеолите
- остром бронхите
- бронхосмазме
- ответ бив

Рестриктивое нарушение дыхания наблюдается в частности при:

- идеопатическом фиброзирующем альвеолите, пневмосклерозе, спайках плевры
- остром и хроническом бронхите
- бронхосмазме любой этиологии
- стенозе внутригрудных дыхательных путей

Критериями обструктивного нарушения дыхания на спирограмме являются:

- снижение ЖЕЛ при увеличении МВЛ
- снижение ФЖЕЛ при относительно нормальной ЖЕЛ
- снижение ЖЕЛ при относительно нормальной ФЖЕЛ
- увеличение ЖЕЛ

Показаниями для проведения ингаляционной бронхоспазмолитической пробы являются:

- установление обратимости обструкции
- установление степени дыхательной недостаточности
- дифференцировка обструкции рестрикции
- остром и хроническом бронхите

Для проведения ингаляционной провокационной пробы используют:

- беротек (фенотерол)
- ацетилхолин
- селективные бета-адреноблокаторы
- неселективные бета-адреноблокаторы

Укажите цифры нормального насыщения крови кислородом:

- 95-100%
- 80-94%
- < 80%
- более 50%

Нарушение диффузионной способности легких является признаком бронхолегочных заболеваний, протекающих:

• с уменьшением функционирующей легочной ткани или «утолщением» альвеолярнокапиллярных мембран

- с бронхиальной обструкцией
- с вовлечением верхних дыхательных путей
- с бронхиальной рестрикцией

Международная номенклатура обозначения типа и режима стимуляции представлена:

- цифровым кодом
- буквенным кодом
- трехбуквенным кодом
- знаками

Укажите наиболее серьезное осложнение кардиостимуляции:

- повышение порога стимуляции
- поломка электронной схемы кардиостимулятора с резким повышением частоты стимуляции до 400 имп/мин
- дислокация стимулирующего электрода в пределах полости правого желудочка
- понижение порога стимуляции

Укажите наиболее серьезное осложнение кардиостимуляции:

- наличие безответных стимулов
- нарушение ритма на фоне кардиостимуляции
- перфорация межжелудочковой перегородки
- повышение порога стимуляции

Спонтанными комплексами на фоне кардиостимуляции считаются:

- зубцы Р и комплексы QRS синусового происхождения
- зубцы Р и комплексы QRS несинусового и не стимуляционного происхождения
- и то и другое
- наличие безответных стимулов

Искусственными желудочковыми комплексами (ИЖК) считаются:

- желудочковые экстрасистолы, деформированные по типу полной блокады левой и правой ножки п. Гиса
- комплексы, вызванные импульсом кардиостимулятора и деформированные по типу полной блокады левой или правой ножки п. Гиса
- комплексы, вызванные двойным возбуждением: импульсом кардиостимулятора и спонтанным импульсом
- наличие безответных стимулов

Появление сливных и псевдосливных комплексов считается признаком:

- неэффективной стимуляции
- поломки электронной схемы
- нормальной работы кардиостимулятора типа «demand»
- полной блокады левой или правой ножки п. Гиса

Показания для имплантации антитахикардитического стимулятора:

- гемодинамически значимые наджелудочковые или желудочковые тахикардии любого происхождения, резистентные к фармакологическому лечению
- а-в реципрокные и а-в узловые тахикардии при синдроме WPW

- пароксизмы мерцательной аритмии при синдроме WPW
- полная блокада левой или правой ножки п. Гиса

Чем отличается стимулятор – кардиовертер от антитахикардитического стимулятора:

- подавляет наджелудочковую или желудочковую тахикардию и автоматически выполняет дефибрилляцию, если подавление тахикардии осложнилось фибрилляцией желудочков
- наличием нескольких программ для подавления тахикардии
- высокой чувствительностью к распознанию тахикардии до появления клинических признаков
- низкой чувствительностью

Укажите одно из показаний к имплантации кардиостимулятора типа «demand»:

- синдром слабости синусового узла с ЭКГ-признаками сино-атриальной блокады 2-3 степени, проба с атропином положительна, ВВФСУ 1340 мсек, КВВФСУ 400мсек
- \bullet синдром слабости синусового узла с клинически значимой синусовой брадикардией по ЭКГ, периоды остановки СУ 4 сек. и более, короткие пароксизмы мерцательной аритмии по данным суточного мониторирования, проба с атропином отрицательная, КВВФСУ \bullet 680 мсек
- \bullet синдром слабости синусового узла с постоянной формой мерцательной брадиаритмии по ЭКГ, интервалом RR от 1000 до 1500 мсек. по данным суточного мониторирования, проба с атропином слабоположительная, КВВФСУ \bullet 420 мсек
- полная блокада левой или правой ножки п. Гиса

Укажите одно из показаний имплантации ЭКС типа «demand»:

- по ЭКГ синусовая брадикардия 42 уд/мин, полная блокада ЛНПГ
- по ЭКГ синдром Фредерика с частотой желудочковых сокращений 40 уд/мин комплексы QRS широкие, эпизоды МЭС
- по ЭКГ синусовая брадикардия 48 уд/мин, а-в блокада 1 степени, полная блокада ПНПГ
- полная блокада левой или правой ножки п. Гиса

Назовите вариант нарушения ритма, характеризующееся независимой активацией, предсердий и желудочков, несмотря на отсутствие между ними полной антеградной блокады проведения:

- парасистолия
- миграция водителя ритма по предсердию
- атриовентрикулярная диссоциация
- ритм из АВ соединения с одновременным возбуждением предсердий и желудочков

Наиболее частыми состояниями, при которых возникает тромбоэмболия легочной артерии, являются все перечисленные, кроме:

- •Травмы костей таза и нижних конечностей
- •Злокачественных новообразований
- •Заболеваний венозной системы
- •Острых вирусных инфекций

Тромбоэмболия легочной артерии возникает при флеботромбозе или тромбофлебите вен нижних конечностей чаще всего на:

- 1-й неделе заболевания
- 2-3 день заболевания
- 2-3-й неделе заболевания
- Спустя месяц и более от начала заболевания

Наиболее часто встречающимся сочетанием симптомов при тромбоэмболии легочной артерии является:

- •Одышка, цианоз, тахикардия
- Кашель, кровохарканье, брадикардия
- Цианоз, кашель, тахикардия
- Изжога, коллапс, одышка

Укажите, какой из перечисленных методов является наиболее информативным для диагностики тромбоэмболии легочной артерии:

- Эхокардиография
- Рентгенологическое исследование органов грудной клетки
- Мультиспиральная компьютерная томография легких
- Магниторезонансная томография легких

У больных с кардиогенным шоком, как правило, отмечается некроз миокарда, массой не менее, чем:

- ■10% миокарда
- •20% миокарда
- •40% миокарда
- •60% миокарда

Причиной острой тампонады сердца может быть:

- Вирусный перикардит
- Выпот в перикард при злокачественной опухоли
- Разрыв левого желудочка
- хроническая сердечная недостаточность

При проведении непрямого массажа сердца частота компрессий грудной клетки должна составлять

- 40-50 в 1 минуту
- 60-70 в 1 минуту
- 80-100 в 1 минуту
- 120-130 в 1 минуту

При проведении реанимационных мероприятий у больного с фибрилляцией желудочков электроимпульсную терапию (дефибрилляцию) нужно начинать с разряда в:

- ●100 Дж
- ●200 Дж
- ●300 Дж
- ●360 Дж

Синдром Морганьи-Эдемса-Стокса никогда не наблюдается при:

- Синоатрильной блокаде
- Неполной АВ-блокаде высокой степени
- Полной поперечной блокаде

• Правильного ответа нет

На возможность синдрома Морганьи-Эдемса-Стокса у больного с синкопальными состояниями могут указывать зарегистрированные при суточном мониторировании ЭКГ:

- Периоды синусовой брадикардии с частотой сердечных сокращений 30 в 1 минуту
- Периоды эктопического ритма с частотой сердечных сокращений 30 в 1 минуту
- Эпизоды желудочковой тахикардии продолжительностью в 5 комплексов
- Все перечисленное

Пресинкопальное состояние, проявляющееся головокружением, слабостью, бледностью кожных покровов, практически всегда предшествует:

- Обмороку при ортостатической гипотонии
- Вазодепрессорному обмороку
- Обмороку при синдроме Морганьи-Эдемса-Стокса
- Эпистатусу

Наиболее частой причиной клинической смерти у больных ишемической болезни сердца является:

- Асистолия желудочков
- Инфаркт правого желудочка
- Фибрилляция желудочков
- Электромеханическая диссоциация

Контроль лечения больных с кардиогенным шоком наиболее эффективно обеспечивается:

- Физикальным обследованием
- Эхокардиографией
- Исследованием гемодинамики с помощью катетера Свана-Ганса
- Электрокардиографией

Укажите препарат выбора для купирования желудочковых нарушений ритма сердца у больных острым инфарктом миокарда:

- Амиодарон
- Лидокаин
- Хинидин
- Верапамил
- Дилтиазем

Укажите наиболее эффективные нитраты пролонгированного действия у больных ИБС с безболевой ишемией миокарда (выявленной при холтеровском мониторировании ЭКГ, на тредмиле, во время велоэргометрического теста):

- Микрокапсулированные формы депо-нитроглицерина (сустак-форте, нитронг-форте, нитрогранулонг-форте)
- Препараты изосорбида динитрата
- Препараты изосорбида-5-мононитрата
- Тетранитрат

Основной лечебный эффект нитроглицерина у больных с левожелудочковой недостаточностью кровообращения связан со следующими явлениями:

- Расширение коронарных артерий
- Расширение периферических артерий

- Увеличение коронарного кровотока вследствие увеличения частоты сердечных сокращений
- Расширение периферической венозной системы

К градуальным изменениям мембранного потенциала нейрона относятся:

- возбуждающий и тормозной постсинаптические потенциалы
- потенциал действия
- потенциал покоя
- спайк

В основе спайковой активности нейрона лежит:

- возбуждающий постсинаптический потенциал
- тормозной постсинаптический потенциал
- потенциал действия
- потенциал покоя

Возбуждающему постсинаптическому потенциалу нейрона соответствует:

- деполяризация мембраны
- реполяризация мембраны
- гиперполяризация мембраны
- отсутствие изменений разности потенциалов мембраны

Тормозному постсинаптическому потенциалу нейрона соответствует:

- деполяризация мембраны
- реполяризация мембраны
- гиперполяризация мембраны
- высокочастотные колебания разности потенциалов

Пространственная и временная суммация потенциалов лежит в основе формирования:

- возбуждающих постсинаптических потенциалов
- тормозных постсинаптических потенциалов
- локальных токов
- спайков

Частота альфа – ритма электроэнцефалограммы составляет:

- 8-13 в сек
- 14-40 в сек
- 4-6 в сек
- более 100 в сек

Частота бета – ритма электроэнцефалограммы составляет:

- 8-13 в сек
- 14-40 в сек
- 4-6 в сек
- 3-0.5 в сек

Быстрый антеградный аксональный транспорт обеспечивает:

- доставку веществ для синаптической деятельности
- доставку трофогенов в ткани
- проникновение вирусов в центральную нервную систему

• проникновение антител в центральную нервную систему

Медленный антеградный аксональный транспорт обеспечивает:

- доставку веществ для синаптической деятельности
- доставку трофогенов в ткани
- доставку трофогенов к нейрону
- проникновение вирусов в центральную нервную систему

Трофические язвы при денервации возникают вследствие:

- дефицита трофогенов
- избытка трофогенов
- недостатка патотрофогенов
- воздействия нейромедиаторов

Дегенерация дендритических «шипиков» сопровождается:

- увеличением числа контактов нейрона в центральной нервной системе
- снижением числа контактов нейрона в центральной нервной системе
- неизменностью числа контактов нейрона в центральной нервной системе
- немедленной смертью мозга

Через гематоэнцефалический барьер в норме проникают:

- аминокислоты, глюкоза
- белки
- антитела
- прямой билирубин

Спинальный шок характеризуется:

- необратимой утратой рефлексов
- обратимой утратой рефлексов, дефицитом активирующих влияний со стороны головного мозга
- нарушением рефлексов выше места перерыва мозга
- дефицитом тормозных влияний со стороны головного мозга

Нарушение подвижности половины туловища обозначается как:

- триплегия
- гемиплегия
- тетраплегия
- моноплегия

Экстрапирамидный паралич характеризуется как:

- атрофический
- спастический
- сопровождающийся гипертонусом мышц, феномен «зубчатого колеса»
- сопровождающийся атонией мышц

Нарушения в моторной коре головного мозга сопровождаются в основном:

- клоническими судорогами
- тоническими судорогами

- тремором
- сенситивной атаксией

Нарушения в подкорковых центрах моторного анализатора сопровождаются в основном:

- клоническими судорогами
- тоническими судорогами
- тремором
- сенситивной атаксией

Нарушения в стволе мозга сопровождаются в основном:

- клоническими судорогами
- тоническими судорогами
- тремором
- сенситивной атаксией

Нарушения волокон, проводящих глубокую чувствительность, сопровождаются:

- клоническими судорогами
- хореей
- тремором
- сенситивной атаксией

Двигательный анализатор в коре головного мозга расположен в:

- лобной доле
- затылочной доле
- задней центральной извилине
- таламусе

Психосоматические расстройства подразумевают:

- только функциональные расстройства внутренних органов
- первичность расстройства в нервной системе по отношению к соматическим расстройствам
- только органические расстройства внутренних органов
- только органические психические расстройства

Для поражения чувствительных волокон периферических нервов характерно нарушение чувствительности по:

- сегментарному типу
- сегментарному типу с сохранением глубокой чувствительности
- дистальному типу на стороне поражения
- проводниковому типу

Для поражения задних корешков спинного мозга характерно нарушение чувствительности по:

- сегментарному типу для общей чувствительности на стороне поражения
- сегментарному типу с сохранением глубокой чувствительности
- дистальному типу на стороне поражения
- проводниковому типу

Для поражения задних рогов спинного мозга характерно нарушение чувствительности по:

• сегментарному типу для общей чувствительности на стороне поражения

- сегментарному типу с сохранением глубокой чувствительности на стороне поражения
- дистальному типу на стороне поражения
- проводниковому типу

Электроэнцефалограмма отражает:

- биоэлектрическую активность мышц
- биоэлектрическую активность головного мозга
- биоэлектрическое сопротивление тканей
- работу сердца

Какие пробы применяют при записи ЭЭГ:

- реакция активации
- реакция активации, фотостимуляция, гипервентиляция
- гипервентиляция
- задержка дыхания

В течение какого времени проводится гипервентиляция на ЭЭГ:

- 1-3 минуты
- 8-10 минут
- 7-8 минут
- час

Места наложения референтного электрода на ЭЭГ:

- мочка уха, кожа лба
- сосцевидный отросток
- кожа рук
- нога

Какие виды активности регистрируются у взрослого здорового бодрствующего человека на ЭЭГ в норме:

- альфа и бета активность
- альфа и дельта активность
- бета и дельта активность
- альфа активность

Где генерируется альфа-ритм:

- в мозжечке
- в лимбических структурах
- в таламусе
- в височной доле

Происхождение бета-активности связано с влиянием со стороны:

- мозжечкеа
- лимбических структур
- ретикулярной формации
- зрительного бугра

Генерация тета-активности происходит:

- в лобной коре
- в спинном мозге

- в лимбических структурах
- в таламусе

Амплитуда альфа-ритма в норме:

- до 300 мкВ
- до 15 мкВ
- до 100 мкВ
- до 5 мкВ

При каком проценте асимметрии по амплитуде, ЭЭГ считается вариантом нормы:

- до 60%
- до 80%
- до 30%
- до 20%

Амплитуда бета-активности в норме:

- до 50 мкВ
- до 100 мкВ
- до 15 мкВ
- до 5 мкВ

Амплитуда тета-активности в норме у взрослых:

- до 40 мкВ
- до 100 мкВ
- до 250 мкВ
- до 5 мкВ

Пароксизмальная активность на ЭЭГ это:

- только генерализованные комплексы пик-волна
- отличные от фоновой активности, внезапно появляющиеся и внезапно исчезающие формы колебаний потенциалов
- электромиограмма, регистрируемая с электродов расположенных на голове
- экстраполяция ЭКГ

К эпилептиформной активности относится:

- гиперсинхронная бета-активность
- билатерально-синхронные разряды
- пики, острые волны, комплексы пик-волна и острая-медленная волна
- гиперсинхронная альфа-активность

Длительность пиков:

- 100-150 мс
- 50-100 мс
- 5-50 мc
- до 5 мс

Длительность острых волн:

- больше 50 мс
- меньше 50 мс

- меньше 30 мс
- до 10 мс

Плоские и низкоамплитудные ЭЭГ свидетельствуют:

- о преобладании в мозге синхронизирующих влияний
- о преобладании в мозге десинхронизирующих влияний
- о снижении порога судорожной готовности
- о повышении порога судорожной готовности

Виды электронейромиографии, чаще используемые в практике:

- стимуляционная и игольчатая
- игольчатая и накопительная
- накопительная, стимуляционная и игольчатая
- накопительная

Основные цели стимуляционной электронейромиографии:

- исследование функционального состояния нервных проводников и нервно-мышечной передачи возбуждения
- исследование функционального состояния двигательных единиц и количества двигательных волокон в мышце
- определение спонтанной активности в мышцах и оценка функционального состояния мотонейронов
- исследование функционального состояния двигательных единиц

Что является функциональной единицей нервно-мышечной системы:

- нервное волокно
- мышечное волокно
- двигательная единица
- нейрон

Что входит в состав двигательной единицы:

- мотонейрон, его аксон, иннервируемые им мышечные волокна
- нервное волокно, иннервируемые им мышечные волокна, мышечное волокно
- мотонейрон и его аксон
- мышечное волокно

Для получения достоверного М-ответа (возбуждения всех волокон мышцы) необходимо:

- супрамаксимальное зачение тока стимуляции
- максимальное зачение тока стимуляции
- субмаксимальное зачение тока стимуляции
- среднее зачение тока стимуляции

Артефакты на $ЭМ\Gamma$ – потенциалы, несвязанные собственно с активностью мышечных элементов, могут быть связаны с:

- движением электрода, прикосновением к электроду, частичным обрывом соединительного провода, наводкой 50 Гц от устройств эксплуатации промышленного тока
- движением электрода, движением исследователя, полным обрывом соединительного провода, наводкой 50 Гц от устройств эксплуатации промышленного тока
- прикосновением к электроду, частичным обрывом соединительного провода, наводкой 50

Гц от устройств эксплуатации промышленного тока

• наводкой 50 Гц от устройств эксплуатации промышленного тока

Расположение активного электрода при выполнении ЭМГ-методики моторных СРВ:

- на коже над областью двигательной точки мышцы
- на коже над сухожилием мышцы или костным выступом
- на коже над зоной прохождения нерва
- на ноге

Какие ЭМГ-данные подтверждают расположение отводящего электрода на двигательгой точке:

- по обязательно правильной форме М-ответа
- по силе тока
- по изолинии
- по длительности М-ответа

М - ответ - это:

- суммация электрических ответов всех двигательных единиц мышцы при стимуляции нерва
- вызванный потенциал мышцы, являющийся синхронным разрядом двигательной единицы в ответ на электрическое раздражение
- вызанный потенциал нерва, являющийся синхронным разрядом нервного волокна ответ на электрическое раздражение
- вызванный нервно-мышечный потенциал

Основные параметры М-ответа:

- интенсивность порогового раздражения, сила тока
- скорость распространения возбуждения, амплитуда, латентный период
- латентный период, амплитуда, форма, длительность
- позитивно-негативное отклонение от изолинии

Повышение порога М-ответа происходит при:

- поражении нерва или мышцы
- нарушение нервно-мышечной передачи
- поражение мотонейрона
- первично-мышечном поражении

Нетипичную форму М-ответа оценивать как патологию после того как:

- убедились в правильности наложения электродов на двигательной точке, учли строение мышцы и проверили достижение супрамаксимальных значений тока стимуляции
- убедились в правильности наложения заземляющего электрода
- убедились в правильности выбора программы
- убедились в правильности наложения референтного электрода

Латентность М-ответа это:

- промежуток от начала артефакта раздражения до начала отклонения потенциала действия мышцы от изоэлектрической линии
- продолжительность М-ответа
- время, за которое ПД, возникнув в точке стимуляции, дойдет до нерва

• возбуждение нейрона

H -рефлекс является:

- полисинаптическим рефлекторным ответом мышцы при раздражении нервного ствола
- моносинаптическим рефлекторным ответом мышцы при раздражении мотонейрона
- моносинаптическим рефлекторным (дуги S1) ответом мышцы при раздражении сенсорных волокон нерва
- потенциал действия nervus Facialis

Основные параметры Н – рефлекса:

- амплитуда, инкремент
- порог, сила тока, частота
- порог, латентность, соотношение амплитуд Н-рефлекса и М-ответа, рекрутирование
- вызванный ответ, латентность, амплитуда, напряжение

Моносинаптическая часть дуги мигательного рефлекса включает:

- систему тройничного и отводящего нерва
- глазодвигательный нерв, тройничный нерв и ядра тройничного нерва
- волокна тройничного нерва (первая ветвь), чувствительное ядро тройничного нерва, ядро лицевого нерва, ствол лицевого нерва, мышцы окружающие глаз
- ядро лицевого нерва, ствол лицевого нерва,

F –волна представляет собой:

- потенциал действия nervus Facialis
- возвратный разряд мотонейронов в ответ на антидромную импульсацию аксонов на тело мотонейронов, возникающую при электрической стимуляции нервного ствола
- разряд мотонейронов в ответ на ортодромную импульсацию аксонов тела мотонейронов, возникающую при электрической стимуляции нервного ствола
- рефлекторный ответ мышцы

Амплитуда F –волны в норме выше амплитуда М-ответа:

- да
- нет
- амлитуда F –волны существенно не отличается отамплитуда м-ответа
- иногда

Феномен декремента означает:

- прогрессирующее снижение амплитуды М-ответа
- прогрессирующее увеличение амплитуды М-ответа
- разнонаправленное изменение амплитуды М-ответа
- потенциал при непроизвольном сокращении

Феномен инкремента означает:

- прогрессирующее снижение амплитуды М-ответа
- прогрессирующее увеличение амплитуды М-ответа
- разнонаправленное изменение амплитуды М-ответа
- потенциал при непроизвольном сокращении

Потенциал действия двигательной единицы:

- основной потенциал при произвольном сокращении мышцы
- потенциал, регистрируемый в мышце, находящийся в состоянии покоя

- потенциал при непроизвольном сокращении
- прогрессирующее снижение амплитуды М-ответа

При поражении передних рогов спинного мозга:

- увеличивается длительность потенциалов действия двигательных единиц, амплитуда, увеличивается число полифазных потенциалов, снижается рекрутирование ПДДЕ
- укорачивается длительность потенциалов действия двигательных единиц, снижается амплитуда, увеличивается число полифазных потенциалов
- увеличивается или уменьшается длительность потенциалов действия двигательных единиц, снижается амплитуда, увеличивается число полифазных потенциалов
- увеличивается потенциал при непроизвольном сокращении

При миопатии:

- увеличение длительности потенциалов действия двигательных единиц
- уменьшение длительности потенциалов действия двигательных единиц, снижение амплитуды, увеличение рекрутирования ПДДЕ
- снижение амплитуды, увеличение длительности потенциалов действия двигательных единиц
- уменьшение длительности возбуждения нейрона

Виды спонтанной активности:

- потенциалы действия двигательных единиц, фибрилляций, положительные острые волны, потенциалы фасцикуляций
- потенциалы фибрилляций, положительные острые волны, потенциалы фасцикуляций, миотонические разряды, псевдомиотонические разряды
- потенциалы фибрилляций, положительные острые волны, f-волна, H-рефлекс, потенциалы фасцикуляций
- положительные острые волны, вызванный ответ нерва, мигательный рефлекс

Признак денервации мышцы:

- потенциалы фибрилляций
- положительные острые волны
- потенциалы действия одиночного мышечного волокна
- миотонические разряды

Положительные острые волны в основном регистрируются:

- редко в здоровой мышце
- при грубой денервации мышечных волокон, при неэффективной реиннервации
- часто при миопатии
- при миастении

Количество стадий течения денервационно-реиннервационного процесса:

- 3
- 5
- 7
- 8

Уменьшение длительности ПДЕ происходит в:

• 1 и 2 стадию денервационно-реиннервационного процесса

- 4 и 5 стадию денервационно-реиннервационного процесса
- 6 и 7 стадию денервационно-реиннервационного процесса
- 3 стадию денервационно-реиннервационного процесса

Увеличение длительности ПДЕ происходит в:

- •1 и 2 стадию денервационно-реиннервационного процесса
- 4 и 5 стадию денервационно-реиннервационного процесса
- 6 и 7 стадию денервационно-реиннервационного процесса
- 3 стадию денервационно-реиннервационного процесса

Реография – это:

- запись изменяющейся величины электрического сопротивления живых тканей, органов или участков тела
- запись биоэлектрической активности мозга
- запись механических колебаний в среде
- запись механических колебаний

Реоэнцефалография в основном отражает гемодинамику бассейна:

- заднемозговой артерии
- внутренней сонной и вертебробазилярной артерий
- наружной сонной артерии
- брыжеечной артерии

Для оценки относительной величины пульсового кровенаполнения принято использовать:

- реографический индекс
- дикротический индекс
- диастолический индекс
- систолический индекс

Реографический индекс – это:

- отношение величины амплитуды реографической волны на уровне инцизуры к величине стандартного калибровочного сигнала
- отношение величины амплитуды реографической волны к величине стандартного калибровочного сигнала
- отношение величины амплитуды на уровне дикротического зубца к величине стандартного калибровочного сигнала
- 1 и 3 ответы верны

Время альфа у взрослых здоровых людей равняется:

- 0.1-0.01 c.
- 0.2-0.3 c.
- 0.02-0.04 c.
- 0.20-0.70

У детей показатель альфа:

- 0.2 c.
- 0.07-0.09 c.
- 0.02-0.04 c.
- 0.1-0.01 c.

Дикротический индекс – это:

- отношение величины амплитуды на уровне дикротического зубца к максимальной амплитуде реографической волны
- отношение величины амплитуды реографической волны на уровне инцизуры к амплитуде на уровне дикротического зубца
- отношение величины амплитуды реографической волны на уровне инцизуры к максимальной амплитуде
- •1 и 2 ответы верны

Дикротический индекс преимущественно отражает:

- состояние венозного оттока
- тонус артериол
- наличие гипертензии
- наличие гипотензии

Диастолический индекс – это:

- отношение величины амплитуды реографической волны на уровне инцизуры к максимальной амплитуде
- отношение величины амплитуды на уровне дикротического зубца к максимальной амплитуде реографической волны
- отношение величины амплитуды на уровне инцизуры к амплитуде на уровне дикротического зубца
- ●1 и 3 верно

Какие пробы могут быть приведены при реоэнцефалографии:

- проба с нитроглицерином
- фармакологические пробы, гипервентиляцию, вдыхание смеси с повышенным содержанием CO2 и вдыхание кислорода, проба с пережатием сонных артерий, пробы с изменением положения головы: повороты, наклоны, сгибание и разгибание
- только пробы с изменением положения головы
- проба с калием

О чем свидетельствует увеличение времени альфа:

- о снижении сосудистого тонуса
- о нарушении венозного оттока
- о снижении эластичности сосудов и повышении сосудистого тонуса
- о гипотензии

Характерно ли повышение дикротического индекса при артериальной гипертензии:

- нет
- да
- иногда
- при инфаркте миокарда

На реоэнцефалограмме при сосудистой дистонии:

• определяется неустойчивость сосудистого тонуса в виде последовательного чередования через неправильные промежутки времени нормального, повышенного или пониженного тонуса

- никаких изменений
- появляются волны с аркообразной вершиной
- снижение сосудистого тонуса

Какой ультразвуковой режим используется при проведении ЭХО-ЭГ:

- триплексный
- А режим
- В режим
- дуплексный

От каких структур происходит отражение УЗ-сигнала при проведении ЭХО-ЭГ:

- от больших полушарий головного мозга
- от костей черепа, срединных структур, боковых желудочков
- только от срединных структур
- 1 и 3 верно

М-это дает информацию:

- об одной анатомической структуре
- суммарно от ряда анатомических структур
- о двух анатомических структурах
- 1 и 3 верно

Выведение М-эха проводится при сканировании:

- только с одной стороны
- сразу с двух сторон
- последовательно с обеих сторон головы
- 2 и 3 верно

Какие изменения при проведении ЭХО-ЭГ будут свидетельствовать о внутричерепной гипертензии:

- увеличение ширины и амплитуды М-эха
- трудность выделения и выраженная пульсация М-эха
- увеличение битемпорального размера головы
- 1 и 3 верно

При двусторонних объемных поражениях будет ли смещение М-эха:

- да
- нет
- не всегда
- 1 и 2 верно

При данных значениях установите степень смещения срединных структур TMS●80 мм, TMD●70мм, Dbt●75 мм:

- слева направо 5 мм
- справа налево 5 мм
- нет смещения
- 2 и 3 верно

При данных значениях установите степень смещения срединных структур TMS •72 мм,

TMD●78mm, Dbt●75 mm:

- слева направо 3 мм
- нет смещения
- справа налево 3 мм
- 1 и 2 верно

Метод вызванных потенциалов является тестированием:

- пирамидного тракта
- афферентных путей центральной нервной системы
- эфферентных путей центральной нервной системы
- 1 и 3 верно

Виды вызванных потенциалов по модальности предъявляемых стимулов:

- ближнего поля, дальнего поля
- зрительные, слуховые, соматосенсорные
- коротколатентные, длиннолатентные
- эндогенные, экзогенные

Виды вызванных потенциалов по условиям выделения и генерации:

- ближнего поля, дальнего поля
- зрительные, слуховые, соматосенсорные
- коротколатентные, длиннолатентные
- эндогенные, экзогенные

Виды вызванных потенциалов по характеру выделяемых ответов:

- ближнего поля, дальнего поля
- зрительные, слуховые, соматосенсорные
- коротколатентные, длиннолатентные
- эндогенные, экзогенные

Виды вызванных потенциалов по параметрам эпохи анализа (латентности)

- ближнего поля, дальнего поля
- зрительные, слуховые, соматосенсорные
- коротколатентные, длиннолатентные
- эндогенные, экзогенные

Отличия вызванных потенциалов от ЭЭГ:

- ullet активность на ВП вызванная, сцепленная со стимулом, активность на ЭЭГ спонтанная, ЭЭГ на ВП является шумом
- вызванная активность на ЭЭГ, спонтанная на ВП
- ВП являются шумом для ЭЭГ, диапазоном эпох анализа
- ответы 2 и 3 верны